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Abstract—Deep learning has shown great success at inter-
preting unstructured data such as object recognition in images.
Symbolic/logical-reasoning techniques have shown great success
in interpreting structured data such as table extraction in
webpages, custom text files, spreadsheets. The tables in PDF
documents are often generated from such structured sources
(text-based Word/LATEX documents, spreadsheets, webpages) but
end up being unstructured. We thus explore novel combinations
of deep learning and symbolic reasoning techniques to build
an effective solution for PDF table extraction. We evaluate
effectiveness without granting partial credit for matching part
of a table (which may cause silent errors in downstream data
processing). Our method achieves a 0.725 F1 score (vs. 0.339 for
the state-of-the-art) on detecting correct table bounds—a much
stricter metric than the common one of detecting characters
within tables—in a well known public benchmark (ICDAR 2013)
and a 0.404 F1 score (vs. 0.144 for the state-of-the-art) on our
private benchmark with more widely varied table structures.

I. INTRODUCTION

PDF is a widely used file format due to its compatibility
across various platforms. This is achieved via a complete
description of a fixed-layout flat document (including text,
fonts, vector graphics, etc.) which, unfortunately, makes it
difficult to extract any higher-level structure. There is a huge
demand to extract tabular data from PDFs for any further
processing/analysis (PDF table extraction was one of top
voted requests in Microsoft Power Query [1]). This problem
is especially complicated because a PDF document can be
generated from a Microsoft Word or LATEX document, an
Excel spreadsheet, an HTML web page, or an Adobe InDesign
document, where each one has its own specific table styles.

Deep Learning (DL) and in particular Convolutional Neural
Networks (CNNs) are a very effective technique for object
localization and recognition in images. With minimal human
effort, given a training set, myriad object types can be de-
tected in photographs. This success has led to using similar
techniques to detect objects in structured images, including
multiple papers on detecting tables, which report high (95%+)
accuracy as measured with the standard IOU (Intersection
Over Union) metric for object detection in images [2], [3],
[4], [5], [6]. (The ICDAR 2013 contest rules [7] score on
IOU over characters, not pixels, but the distinction is minor.)
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The IOU metric allows for some fuzziness on the detected
object as in a photograph pixel-precise bounds are unimportant
and is also differentiable which is important for DL algorithms.
For example, in Fig. 4, the red predicted table bounding box
cuts through the bottom row; it is confused about whether
the row should be included. A table detection algorithm that
consistently omits the bottom row of 100 row tables would
score as 99% accurate despite being useless for downstream
processing. In fact, extracting all but that last row of a table
with high confidence is often worse than not detecting a
table at all, so we propose instead using the binary metric of
whether the entire table is correct for evaluating table detection
algorithms. This choice was encouraged by the Microsoft
Power Query team who said they could not ship a feature that
would silently omit part of a customer’s data. The state-of-the-
art table detection algorithm DeepDeSRT [6] which is reported
to have an F1 score of 0.9677 on the ICDAR 2013 table
competition using the IOU metric, instead under the binary
metric gets an F1 score of 0.339. While the IOU metric may
have made us think table detection was a solved problem, this
stricter metric shows there is a lot of room for improvement.

On the other hand, symbolic/logical-reasoning techniques
have been very effectively used to extract tables from a variety
of semi-structured documents including webpages [8], custom
text/log files [9], and spreadsheets [10]. These techniques
synthesize parsing programs from few user-provided examples
or completely automatically [11] by inferring a repetitive
pattern in the underlying input document. The PDF domain
poses new challenges for such techniques due to lack of any
explicit structure (in glyph-based input) and due to inherent
noise (in pixel-based positions). One of our key contributions
is a symbolic algorithm that decomposes the problem of table
identification into identifying a series of hierarchical sub-
structures, each of which can be efficiently inferred. However,
such inference rules become increasingly difficult to fine-tune
when we attempt to precisely define what constitutes a table,
which happens automatically in a DL-based approach.

These conflicting concerns motivate a combined method-
ology that can provide the benefit of precision that symbolic
techniques yield by hierarchical identification of sub-structures
and the benefit of automated fine tuning that DL-based tech-
niques yield via their grasp of real-world data and noise.
Initially, we built a shallow combination: given that DL is



Fig. 1: Workflow of TableExtractor

good at detection but bad at precise localization while the
symbolic algorithm is good at precise localization but bad at
determining what is and is not a table, we simply filter the
results from the symbolic algorithm to those table proposals
overlapping a result from the DL algorithm. To achieve further
improvements, we looked into deeper integration where the
symbolic and the DL pipelines can provide feedback to each
other at any stage. For instance, one common failure mode of
the symbolic algorithm is to over-expand the detected table
to include nearby text which is aligned by coincidence; DL
algorithms rarely make this category of mistake, so we added
a step where the symbolic algorithm, before building tables
out of words, first queries a DL algorithm for whether each
word is definitely not part of a table. Specifically, we first
use a state-of-the-art semantics segmentation model to predict
the heatmap (i.e. whether a pixel belongs to a table word)
and classify words by majority of the pixel classes within
their bounding boxes. Moreover, we build a novel artificial
dataset, TableBank++ with semantic masks to support model
training. Our key idea to facilitate deep integration of symbolic
and DL algorithms is to design our symbolic algorithm as a
pipeline algorithm consisting of a series of steps, where each
step computes some set of rectangles—a data structure that can
be consumed or refined by any module from the DL pipeline.

Our experimental results show that our approach achieves
a 0.725 F1 score on the ICDAR 2013 dataset and a 0.404 F1

score on our private dataset with more varied table structures—
greatly exceeding the scores of 0.339 and 0.144, respectively,
of the state-of-the art DL algorithm DeepDeSRT [6].

In addition, the symbolic algorithm is very lightweight and
can run on devices with limited resources. It has been released
as the PDF Data Connector in Power Query, a popular ana-
lytics offering from Microsoft [12] and is the fastest growing
new connector introduced in the past two years; in part due
to the greater computational demands of DL inference, the
combined approach has not yet been released commercially.

Our paper makes the following contributions:

• We present a novel symbolic algorithm for PDF table
extraction that uses a series of inference rules to hierar-
chically extract tables from glyphs.

• We present a novel DL-pipeline, parameterized by DL-

models trained with a new dataset TableBank++.
• We present a novel combination methodology that facili-

tates a tight integration of the symbolic and DL pipelines.
• We present an extensive evaluation showcasing that the

combined approach outperforms both.

II. BACKGROUND

A. Dataset

We used these datasets to develop & evaluate our approach:
TableBank++ is built on top of TableBank [13], a bench-

mark that contains 417k labeled tables. TableBank first collects
thousands of Word and LATEX documents from the Internet
as, unlike PDF, those documents explicitly provide the object
information (e.g. tables and cells) and can be converted to
PDF format. TableBank then instruments the documents to
generate two versions of the PDFs with highlighted table
boundaries in different colors, and uses basic computer vision
techniques to extract the table boxes as labels. Unfortunately,
TableBank does not contain enough information to train our
semantic segmentation networks. In particular, we also want
the label of each pixel as (1) TabText (text box in a table),
(2) NonTabText (text box not in a table), or (3) NonText
(outside of any text box). To address this issue, for each PDF
page, we use the symbolic pipeline of TableExtractor (Sec-
tion III-A) to extract the text bounding boxes (e.g. Fig. 3b). We
use TableBank++ as the training dataset to build DL models.

ICDAR 2013 [7] is a competition dataset of natively-digital
PDF documents for table detection and structure recognition.
ICDAR 2013 includes a total of 150 tables (i.e. labeled with
table and cell bounding boxes): 75 tables in 27 excerpts from
the EU and 75 tables in 40 excerpts from the US government.
We use ICDAR 2013 as a test dataset to evaluate our approach.

Camelot is an open-source Python library1 for digital PDF
table extraction. We refer to their test suite as the Camelot
dataset, which contains 52 PDFs (62 pages) and 70 tables.
This dataset is only used to evaluate our approach.

ComplexTab is a private dataset which includes a collection
of PDFs we received from customers as part of the require-
ments gathering stage of developing the symbolic pipeline of
TableExtractor. The reason for constructing ComplexTab to

1https://github.com/atlanhq/camelot



Glyph g := {string, font} text metadata from PDF parser
Word W := {[g], font} maximal list of “nearby” Glyphs that share a font

Text Run R := [W ] maximal list of “nearby” Words that may have different fonts
Cell C := [R] maximal list of “aligned” Text Runs

Alignment A := {[C], axis} maximal list of Cells that have the “same” position along some axis
Contiguous List L := {A, [C]} a maximal uninterrupted subsequence of multiple Cells within an Alignment

(the rectangle defined by [C] may not overlap any other Cells)
Grid G := [[L]] maximal list of uninterrupted Contiguous Lists in each axis

must satisfy that a Cell C in the rectangle of G iff ∀a∈G∃L ∈ a C ∈ a
Table T := {[G], [C]} maximal list of overlapping Grids plus an optional list of “related” Cells

Fig. 2: Grammar forming hierarchical structure on document

evaluate our approach is two-fold. First, ComplexTab provides
more tables than ICDAR 2013 dataset: 2737 PDF pages across
64 documents for a total of 4358 carefully labeled tables.
Moreover, while tables in ICDAR 2013 are very regular, con-
taining explicit lines and few multi-row or multi-column cells,
the tables in ComplexTab are more diverse and complicated.2

For instance, many tables do not have borders and the columns
may have big gaps among them. Thus, ComplexTab is more
effective in evaluating the generalizability of our approach.

B. Metric

Our task is identifying the bounding boxes of all of the
tables in a given page. As we target PDFs with explicit text
information, this is equivalent to selecting all the text in each
table, so for the DL parts that output bounding boxes, we snap
them to the word bounding boxes for our comparisons. Words
here are defined by the glyph bounding boxes directly from the
PDF grouped by a heuristic tuned to conservatively combine
glyphs close enough to definitely be part of the same word.

Note that while a complete system would include interpret-
ing the table structure, we do not evaluate that in this paper.
In practice, our symbolic technique builds a predicted table
structure while identifying tables. As DL is not used for that
part of our algorithm, it is out of scope for this paper.

III. APPROACH

Fig. 1 illustrates the workflow of our approach. The system
takes a digital PDF page as input and utilizes two interleaved
approaches to extract tables. In this section, we first define
the key concepts and introduce the workflow of the symbolic
approach. Next, we present the details of the deep-learning-
based approach. Finally, we introduce the combination of them
for accurate table extraction.

A. Symbolic Algorithm

The symbolic algorithm is a bottom-up approach that builds
a hierarchy (Fig. 2) starting with Glyphs all the way up to
Tables. The key observation is that a table primarily is a grid
of cells that are aligned both horizontally and vertically, and
that such spacing and alignment is unlikely to be observed
in text blocks that are not tables. Leveraging this observation

2https://library.olympic.org/Default/doc/SYRACUSE/165312 for example

is not straightforward because defining “cell” and “aligned”
symbolically is difficult and tables often have more compli-
cated structures involving merged cells, hierarchical headers,
and other formatting that is not a straightforward grid of cells.

The objects in the grammar in Fig. 2 (Fig. 3 shows visualiza-
tions for them on an example) share the following properties:
Property 1: They are all rectangles with additional metadata.
This allows for straight-forward communication with a DL
algorithm which can also report its results as rectangles or
consume rectangles as inputs.
Property 2: The number of instances of each object is
tightly bounded (mostly linear; follows from the maximality
constraints in the definitions), which means the number of
objects the algorithm has to deal with never gets too large.

Words, Text Runs, Cells, and Tables are all partitionings
of the next smaller object (e.g. each Glyph is in exactly
one Word). Alignments can be thought of 6 (non-singleton)
partitionings of Cells, corresponding to the 6 coordinates: the
two edges and the center along each axis

Contiguous Lists and Grids are both bounded by the square
of the number of Cells; we omit the proofs for space reasons.

The grammar has some undefined terms in quotes like
“nearby” and “same” where our manually authored heuristics
come in. While we had to choose that, for example, two Cells
have the “same” (left, center, etc.) position for deciding if they
they belong in the same Alignment if their positions differ by
no more than half the width of a character, we do not think
there are any deep insights hidden in these heuristic values;
we just happened to learn them through hand-tuning. There is
ongoing work on learning such heuristics automatically [14].

Additionally we gloss over many engineering details: e.g.
two Glyphs are not “nearby” to form a Word if there is a border
line between them. But that border line could be specified in
many different ways involving PDF paths or images that our
algorithm normalizes into a single concept of a line.

While not required by this formulation of the problem, our
algorithm is deterministic and selects a single answer for,
say, identifying the Words, before grouping them into Text
Runs, although one could imagine a probabilistic algorithm
that instead proposes multiple possibilities that were carried
through the rest of the algorithm. We made our choice both
for simplicity of implementation and for speed. Alternatively,
any of the symbolic phases can be replaced or augmented with



(a) Glyphs (b) Words

(c) Text runs (d) Cells

(e) Contiguous lists
(the two “Athlete Bib” columns are aligned but in separate boxes)

(f) Conflicts
(“H”-shaped conflict between the two “Athlete Bib” columns)

(g) Grids (h) Tables

Fig. 3: Visualizations of selected steps of the symbolic algorithm

a different algorithm, perhaps powered by DL, given that our
process is about passing rectangles thorugh a series of phases.

The actual algorithm consists of a series of passes that takes
the objects from the previous phase, does a pass over them in
order top-to-bottom and/or left-to-right, and while doing so
generates the objects for the next phase. The more interesting
steps are those to generate Cells, Grids, and Tables.

For Cells, when not clearly defined by border lines, multiple
interpretations are attempted by making multiple hypotheses
about the line spacing between Text Runs and checking if any
of those hypotheses lead to a consistent identification of rows.
If both heuristics fail, then each Cell is just a single Text Run.

As an optimization, there is an intermediate object between
Contiguous Lists and Grids, called “Conflicts” which are rect-



Fig. 4: Example of Table Detection

angles that define the maximal edges of Grids. Any Cell that
belongs to no Contiguous List is a Conflict as the rectangle of a
Grid may never overlap the rectangle of such a Cell. Also, the
space between any two aligned Contiguous Lists is a Conflict:
if a Grid overlaps that entire space along the axis of those
Contiguous Lists, then it overlaps two Contiguous Lists that
were intentionally separated due to having some “interruption“
between them. Given Conflicts, computing Grids requires only
sweeping across the page top-to-bottom keeping track of the
rectangles that can be drawn without violating any Conflicts.

Finally, for Tables, first note that the choice of overlapping
Grids instead of a single Grid allows the algorithm to capture
more complicated table structures without having to explicitly
support them. As long as enough cells are aligned, the rectan-
gle around all of the overlapping Grids will capture the table.
For headers that may not be aligned with the data, we have
heuristics for “related” cells based on following border lines
that go through or nearby the rectangle defined by Grids.

B. DL-Based Detection and Classification

The DL-based detection and classification is a top-down
approach that observes a page globally and narrows the scope
down to inference. We use two DL models to predict table
bounding boxes and classify Words defined in Section III-A.

Table Detection: We use the state-of-the-art object detection
framework, Faster-RCNN, to predict the table bounding boxes.
Faster-RCNN is a two-stage object detector, which includes
two distinct modules: (1) Region Proposal Networks (RPN)
generate proposals of Region of Interest (RoI) for covering
objects and (2) Region-based CNNs (RCNN) take image
features and proposals as input to classify the content in
proposals and to adjust the bounding box shapes. Two stage
predictor generally has a better prediction accuracy (e.g. higher
mean Average Precision) but suffers low speed. On the other
hand, one-stage object detectors (e.g. YOLO [15]) have higher
inference speed but their mAP is relatively low. We choose
Faster-RCNN because we think the prediction accuracy is
more important for our scenario. The quality of table detection
is very sensitive to the accuracy of predicted bounding boxes,
where missing or extraneous text (e.g. missing the last row)
will greatly hurt the reliability of the extracted tables. More-
over, unlike common objects, the aspect ratio range of tables
is very large (e.g. narrow and long vs. wide and short tables),
which is challenging for detectors.

Fig. 5: Example of Side-by-side Tables

Word Classification: Bounding boxes play a key role in
locating tables, however, they are predicted on the pixel-level
and such results may not be suitable for the table extraction
task. Fig. 4 shows a toy example of table detection using
Faster-RCNN. In the figure, the green dashed box is the ground
truth and the blue and red boxes are two predicted candi-
dates with confidence scores 0.85 and 0.9, respectively.
As the overlap of the blue and red boxes is greater than the
Non-Maximum Suppression [16] threshold and the red box’s
confidence is higher, Faster-RCNN ignores the blue one and
only outputs the coordinates of the red box. In addition, this
prediction also has a better IoU (Intersection Over Union)
score since the red-green and blue-green intersection areas are
similar and the blue-green union area is larger. However, from
the figure, we can observe that the bottom line of the red box
cuts through the last row and is confused as to whether these
words should be included in table. On the other hand, the blue
box includes all the words and it is more practical for our task.

To address the above conflict, we introduce a new DL
model for finer-grained prediction. We use the extra model
to predict whether the words belong to tables or not, a
task the symbolic algorithm can have difficulty with in the
presence of columns or otherwise coincidentally lined up text
in paragraphs. As showed in the blue block of Fig. 1, DeepLab
V3 [17] takes an image as input and outputs a segmentation
heatmap. The heatmap contains three channels: (1) TabText,
(2) NonTabText, and (3) NonText, which are defined in
Section II-A. Next, a word classification module investigates
the heatmap pixels in each word bounding box and takes the
majority as the class, and the results of both table detection and
word classification are incorporated into the symbolic pipeline
to help improve the extraction accuracy.

Word classification provides finer-grained results, and it is
intuitive that we can detect tables by just grouping adjacent
TabText words. We may be tempted to skip the table
detection model to simplify the workflow, but that turns out
to only work if there is only one table on the page; the
intuitive approach fails on pages with multiple tables. The
example in Fig. 5 showing side-by-side tables demonstrates
this. The trivial word grouping technique cannot separate them,
however, the table detection network can predict multiple
objects in the image, which boosts the extraction accuracy.

C. Integrated Approach

The key insight of TableExtractor (Fig. 1) is the symbolic
technique is great at finding all parts of the page that are
well-structured and aligned but has to rely on the DL-based



TABLE I: Faster-RCNN architecture

Module Component Hyperparameter
Stem C(7, 64), stride2 +MP (3), stride2
Res2 [C(1, 64), C(3, 64), C(1, 256)]× 3

Backbone Res3 [C(1, 128), C(3, 128), C(1, 512)]× 4
Res4 [C(1, 256), C(3, 256), C(1, 1024)]× 23
Res5 [C(1, 512), C(3, 512), C(1, 2048)]× 3

FPN p2 - p5 C(1, 256), C(3, 256)
p6 MP (2)

head C(3, 256)
RPN objectness C(1, 6)

anchor offset C(1, 24)

head FC(, 1024)× 2
ROI classification FC(, 2)

bbox regress. FC(, 4)

approach for the more vague concept of what parts of the page
appear to be part of a table. The integration of the two follows.

First, the Words identified by the symbolic technique are
classified by the DL-based approach, and those identified as
NonTabText are included in the Conflicts, thereby omitting
them from the Grids. This helps avoid over-expanding tables
when they contain cells that happen to line up with nearby
paragraphs or other similar issues. This two-way communica-
tion between the symbolic and DL parts of the approach is
the key novelty of our algorithm.

Second, the Tables are filtered by whether they overlap with
a table found by the DL-based table detection step. This helps
avoid including text that is coincidentally lined up as tables
while not being impacted by the imprecision of the bounding
boxes generated by DL.

IV. EXPERIMENTAL SETUP

A. Model Architecture

Faster-RCNN: Table I shows the model architecture with
the following definitions: (1) C(m,N) is the 2D convolution
with N m ×m kernels, (2) MP (m) is max pooling with a
m×m kernel, (3) [ma,mb,mc]×N means modules ma, mb,
mc are grouped and repeated N times, and (4) FC(,m) is a
fully connected layer with output dimension m.

The Backbone net is ResNet-101 which is used for generat-
ing features. FPN indicates Feature Pyramid Network which is
used for fusing Backbone features at different scales. Note that
FPN contains 5 modules (i.e. p2 to p6) and the architecture of
p2 to p5 are identical. We present their architectures in one row
for simplicity. RPN indicates Region Proposal Network which
is developed for generating proposals for covering objects
and ROI indicates Region of Interest Network which aims to
classify object and regress bounding boxes.

Deeplab V3: The model architecture of Deeplab v3 is
presented in Table II. The backbone is ResNet-101, which
is identical to the backbone of Faster-RCNN. ASPP indicates
Atrous Spatial Pyramid Pooling, which is developed to encode
multi-scale contextual information using Atrous Convolution.
Specifically, Cd(m, d,N) means the Atrous Convolution with
N m×m kernels with dilation size of d. Decoder is a simple
Convolutional Network which fuses features & outputs masks.

TABLE II: Deeplab v3 architecture

Module Component Hyperparameter
Backbone ResNet -

ASPP
Conv

C(1, 256), Cd(1, 12, 256),

Cd(1, 24, 256), Cd(1, 36, 256)
Pooling adaptive avg pooling(1)

Decoder C(1, 256)

B. Implementation

We implemented the symbolic algorithm in C# and the DL
models in PyTorchand ran the experiment on an Ubuntu 16.04
Azure virtual machine with an Nvidia K40 GPU.

V. EXPERIMENTAL RESULTS

Table III shows experimental results of evaluating TableEx-
tractor on three datasets. In the Number of Pages block,
the columns W/ all T.P. and W/o F.P. denote the
numbers of the detected pages with all true positive tables
and without any false positive tables, respectively. In the
Number of Tables block, Rele., Sele., Overl., and
T.P. denote Relevant (ground truth), Selected (detected),
Overlapping (ground truth overlapping any detected) and True
Positive (ground truth matching detected) tables, respectively.
Note Overl. may exceed Sele. in the case where multiple
nearby tables are misidentified as a single table.

We show precision, recall, and F1 for two metrics:
Localization is the one we discussed above that requires
matching exactly the words in the table (so a bounding box
that cuts through a row/column on the edge of a table may
be expanded using word boundaries and considered correct);
and Detection is a very forgiving metric which considers
any pixels overlapping the ground truth to be a correct an-
swer. While we do not grade algorithms on the Detection
metric, it is informative both because it helps identify how
the algorithm is failing and because TableExtractor combines
table detection results based on any overlap at all. Because
Detection recall numbers are nearly perfect in every cate-
gory, only the precision column distinguishes algorithms.

Our story starts with the DL approaches: TableBank [13]
(the baseline), DL (our DL), and DeepDeSRT (the state-of-
the-art DL). All do poorly on the Localization metric:
none of the precision, recall, or F1 scores exceed 0.4 and
most of them are below 0.2. They do best on the ICDAR
dataset, with DeepDeSRT in a clear lead with an F1 score
of 0.339 compared to 0.251 for TableBank and 0.209 for
DL. The comparison is tighter but in a different order for
ComplexTab where DL is in the lead with an F1 score
of 0.143 (resulting from our training using TableBank++),
followed by DeepDeSRT at 0.134 and TableBank at 0.123.

Next we look at Symbolic, our algorithm that involves no
DL. Its F1 scores are somewhat higher at 0.359 overall and
0.509 for the ICDAR dataset, primarily driven by significantly
higher recall of 0.418 (0.747 for ICDAR) compared to 0.200
(0.371) for the best recall among the DL-based techniques,
but looking at the Detection precision column compared



TABLE III: Comparison results of the integrated, ML-based and symbolic approaches

Dataset
Number of Pages Number of Tables Detection Localization

Total W/ all W/o Rele. Sele. Overl. T.P. Precision Recall F1 Precision Recall F1T.P. F.P.

Ta
bl

eb
an

k All 3054 1761 557 4598 7445 4522 780 0.493 0.983 0.657 0.105 0.170 0.130
ComplexTab 2737 1585 448 4358 7045 4283 704 0.481 0.983 0.646 0.100 0.162 0.123

Camelot 62 14 10 70 84 70 15 0.952 1.000 0.976 0.179 0.214 0.195
ICDAR 255 162 99 170 316 169 61 0.649 0.994 0.785 0.193 0.359 0.251

In
te

gr
at

ed

All 3054 2317 2053 4598 3910 4465 1794 0.796 0.971 0.875 0.459 0.390 0.422
ComplexTab 2737 2055 1802 4358 3659 4226 1618 0.787 0.970 0.869 0.442 0.371 0.404

Camelot 62 44 43 70 68 70 48 0.971 1.000 0.985 0.706 0.686 0.696
ICDAR 255 218 208 170 183 169 128 0.913 0.994 0.952 0.699 0.753 0.725

D
L

All 3054 1788 483 4598 7959 4494 919 0.539 0.977 0.695 0.115 0.200 0.146
ComplexTab 2737 1611 417 4358 7469 4255 843 0.535 0.976 0.691 0.113 0.193 0.143

Camelot 62 15 9 70 96 70 17 0.938 1.000 0.968 0.177 0.243 0.205
ICDAR 255 162 57 170 394 169 59 0.515 0.994 0.679 0.150 0.347 0.209

Sy
m

bo
lic

All 3054 2392 1314 4598 6109 4583 1923 0.527 0.997 0.689 0.315 0.418 0.359
ComplexTab 2737 2131 1136 4358 5695 4343 1748 0.524 0.997 0.687 0.307 0.401 0.348

Camelot 62 44 36 70 85 70 48 0.776 1.000 0.874 0.565 0.686 0.619
ICDAR 255 217 142 170 329 170 127 0.514 1.000 0.679 0.386 0.747 0.509

Sy
m

.+
T

D All 3054 2333 1802 4598 4542 4479 1830 0.686 0.974 0.805 0.403 0.398 0.400
ComplexTab 2737 2073 1577 4358 4255 4240 1656 0.677 0.973 0.799 0.389 0.380 0.385

Camelot 62 44 42 70 74 70 48 0.892 1.000 0.943 0.649 0.686 0.667
ICDAR 255 216 183 170 213 169 126 0.789 0.994 0.880 0.592 0.741 0.658

Sy
m

.+
W

C All 3054 2372 1974 4598 4179 4564 1883 0.769 0.993 0.867 0.451 0.410 0.429
ComplexTab 2737 2109 1727 4358 3915 4324 1706 0.761 0.992 0.862 0.436 0.391 0.412

Camelot 62 44 42 70 71 70 48 0.930 1.000 0.964 0.676 0.686 0.681
ICDAR 255 219 205 170 193 170 129 0.870 1.000 0.931 0.668 0.759 0.711

D
ee

pD
eS

R
T All 3054 1708 1534 4598 3105 4366 554 0.893 0.950 0.920 0.178 0.120 0.144

ComplexTab 2737 1530 1382 4358 2818 4126 479 0.893 0.947 0.919 0.170 0.110 0.134
Camelot 62 13 10 70 85 70 12 0.953 1.000 0.976 0.141 0.171 0.155
ICDAR 255 165 142 170 202 170 63 0.861 1.000 0.926 0.312 0.371 0.339

··
·+

Sy
m

. All 3054 2352 2344 4598 3507 4439 1840 0.871 0.965 0.916 0.525 0.400 0.454
ComplexTab 2737 2091 2092 4358 3258 4199 1665 0.866 0.964 0.912 0.511 0.382 0.437

Camelot 62 44 43 70 70 70 48 0.943 1.000 0.971 0.686 0.686 0.686
ICDAR 255 217 209 170 179 170 127 0.944 1.000 0.971 0.709 0.747 0.728

··
·+

W
C

All 3054 2342 2339 4598 3494 4429 1814 0.880 0.963 0.920 0.519 0.395 0.448
ComplexTab 2737 2079 2083 4358 3248 4189 1637 0.875 0.961 0.916 0.504 0.376 0.430

Camelot 62 44 43 70 70 70 48 0.943 1.000 0.971 0.686 0.686 0.686
ICDAR 255 219 213 170 176 170 129 0.955 1.000 0.977 0.733 0.759 0.746

to the DL approaches, it detects tables where there are not any
between marginally more often and a lot more often, which
leads us to the first version of the integrated approach.
Sym.+TD (· · ·+Sym.) uses DL (DeepDeSRT [6]) to filter

tables generated by the symbolic algorithm to those that
overlap some output from the DL algorithm. The result is
a significant improvement in the Detection precision at
a small cost in recall: 0.686 (0.871) vs. 0.527. There is a
similar improvement in the Localization precision of
0.403 (0.525) vs. 0.315.

Since that approach made the recall worse, we tried a
different way to integrate DL into our pipeline, by building a
model for word classification used as an intermediate step. We
evaluate this algorithm as Sym.+WC. The Localization
recall is only slightly worse at 0.410 vs. 0.418 but the
precision is better at 0.451 vs. 0.351. Note the recall is actually
slightly better on the ICDAR dataset, the word classification

information actually allows the combined algorithm to get the
correct bounds for two more tables.

Adding both table detection and word classification to
the symbolic algorithm gives us Integrated (or · · ·+WC
when using DeepDeSRT as the table detection filter). We
can tell the techniques are complementary as the precision
of Integrated exceeds that of Sym.+TD or Sym.WC. Its
F1 is the best for the simpler tables in the Camelot and
ICDAR datasets, but for the more complicated tables in the
ComplexTab dataset, it is slightly better to use one of the
simpler combinations (Sym.+WC or ...+Sym.).

VI. RELATED WORK

Several works have been published on the topic of table
detection for multiple media: e.g., HTML [18], [19], [20],
images [21], [22], [23], [24], [25], spreadsheets [26], text/log
files [11], [9] and PDF documents [27], [28]. Generally, these



techniques aim to extract tables from surrounding text using
logical structure analysis or traditional image processing tech-
niques. Liu et al. [28] proposed a heuristic rule-based approach
to detect table boxes in PDFs. Tran et al. [29] use vertical
alignments to identify tables. Kim et al. [30] identify grids,
using a similar intuition to our grids of combining horizontal
and vertical alignments. These prior rule-based approaches
assume a regular table structure, lacking equivalents to our use
of overlapping grids and related cells. Le et al. [9] proposed
an interactive approach (where users provide examples) that
leverages inductive synthesis to generate programs for table
extraction. Raza et al. [11] proposed a predictive program
synthesis technique for text and web table extraction. Due to
the great success of DL in computer vision, recent research
focuses more on table detection using Convolutional Neural
Networks (CNNs). Kavasidis et al. [2] proposed a saliency-
based CNN performing multi-scale reasoning on visual cues
followed by a fully-connected conditional random field (CRF)
to localize tables and charts in digital documents. Schreiber
et al. proposed DeepDeSRT[6], a Faster-RCNN based ap-
proach for table detection and structure recognition. Dong
et al. proposed TableSense [26], which utilizes CNNs and pre-
cision bounding box regression to detect tables in spreadsheets.

Kalyan et al. [31] combined deep learning & symbolic
methods for program synthesis, wherein deep learning was
used to replace some heuristic components in the overall
symbolic method. Iyer et al. [32] cycled the learning result
between machine learning and program synthesis to produce
robust programs with few explicit examples. We showcase a
more intricate combination, where the two methods feed into
each other, and for a different data extraction application.

VII. CONCLUSION

PDF is a widely used file format due to its cross-application
support. However, PDF does not provide structure information
for objects like tables and paragraphs, which limits down-
stream processing. In this paper, we focus on the problem
of digital PDF table extraction and propose an integrated
approach combining DL and symbolic techniques to improve
the accuracy of table extraction. Also, we propose that, as table
detection without accurate localization is not useful for down-
stream processing, we should evaluate the latter. The experi-
mental results indicate the combined algorithm out-performs
both purely symbolic and purely DL-based approaches. We
believe that such novel combinations of symbolic/logical-
reasoning techniques (which can precisely model the seman-
tics of the underlying domain) with machine learning based
methods (which can deal with noise and model the bias in the
real world data) will enable new applications.
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