
SmartSynth: Synthesizing Smartphone
Automation Scripts from Natural Language

Vu Le
Univ. of California at Davis

vmle@ucdavis.edu

Sumit Gulwani
Microsoft Research, Redmond
sumitg@microsoft.com

Zhendong Su
Univ. of California at Davis

su@cs.ucdavis.edu

ABSTRACT
This paper presents SmartSynth, a novel end-to-end programming
system for synthesizing smartphone automation scripts from natural
language descriptions. Our approach is unique in two key aspects.
First, it involves a carefully designed domain-specific language that
incorporates standard constructs from smartphone programming
platforms to balance its expressivity and the ability to synthesize
scripts from natural language. Second, our synthesis algorithm in-
tegrates techniques from two research areas: (1) It infers the set
of components and their partial dataflow relations from the natural
language description using techniques from the Natural Language
Processing community; and (2) It uses techniques from the Program
Synthesis community to infer missing dataflow relations via type-
based synthesis and constructs scripts in a process akin to reverse
parsing. SmartSynth also performs conversational interactions with
the user when multiple top-ranked scripts exist or it cannot map part
of the description to any component. Evaluated on 50 tasks collected
from smartphone help forums, our system produces the intended
scripts in real time for over 90% of the 640 natural language descrip-
tions obtained from a user study for those tasks. SmartSynth has
also been adapted to TouchDevelop, an end user-targeted program-
ming environment on mobile platforms, with very promising results
(see http://www.cs.ucdavis.edu/~su/smartsynth.mp4 for
a video demo). We believe that SmartSynth is a step toward fully
personalized use of smartphones’ increasingly rich functionalities.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Programming; D.3.2
[Programming Languages]: Language Classifications—Design
languages; H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Natural language

General Terms
Algorithms, Design, Languages, Human Factors

Keywords
Program synthesis, natural language processing, smartphone, au-
tomation script

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’13, June 25-28, 2013, Taipei, Taiwan
Copyright 2013 ACM 978-1-4503-1672-9/13/06 ...$15.00.

1. INTRODUCTION
We have entered a new era for computing in recent years with

the sharp increase in availability and popularity of multi-functional
mobile devices. These devices are equipped with more and more
sensors, which radically multiplies the ways people interact with
them. Indeed, they have led to an enormous number of novel appli-
cations and interesting challenges for programming [34] and finding
personalized applications [42].

In this paper, we study the problem of developing smartphone
automation scripts, those that execute some tasks automatically un-
der certain conditions (e.g., the phone turns off network connections
automatically when its battery is low, or the phone sends the user’s
spouse a text saying “Kids are dropped” when she is at the location
of their kids’ school). The abundance of such scripts on popular
smartphone platforms like Locale [39], Tasker [7], and On{x} [29]
motivate our problem domain.

The current state of the art in end-user programming of smart-
phones is far from satisfactory. General-purpose languages such as
Java, C#, and Objective C are clearly not suitable for most end user.
The other alternative is visual programming systems such as App
Inventor [30] and Tasker [7], which visualize programming con-
structs into building blocks. Users program by identifying blocks
and composing them visually. Although these systems are more
user-friendly, they still require end users to consciously think about
programming like typical programmers, such as introducing vari-
ables and deciding when/how to use conditionals, loops, or events.

Because of the deluge of mobile devices and their underlying
systems, we believe in the promising direction toward general pro-
gramming systems with natural interfaces for meeting end users’
needs. Two notable examples are VoiceActions [10] and Siri [5] for
controlling smartphones via speech. However, they only provide
support for limited smartphone features. Siri, for example, only
matches speech to pre-defined patterns. Our goal is to be (1) natural
so that users can interact with the system through natural language
(NL) and (2) general so that, unlike Siri, our system does not simply
match NL descriptions to pre-defined patterns.

SmartSynth To this end, we introduce SmartSynth, a new end-
to-end NL-based programming system for synthesizing smartphone
scripts. The key conceptual novelty of SmartSynth is the methodol-
ogy to decompose the problem into: (1) designing a domain-specific
language (DSL) to capture automation scripts users commonly need,
and (2) combining natural language processing (NLP) and program
synthesis [11] techniques to synthesize scripts in the DSL from NL.
Our technical novelties include: (1) a carefully designed DSL that
incorporates standard constructs from smartphone programming
platforms and balances its expressivity and the feasibility for auto-
matic script synthesis from NL descriptions, (2) techniques adapted
from the NLP community to translate English descriptions into rele-

http://www.cs.ucdavis.edu/~su/smartsynth.mp4

Component
Discovery

Script
Discovery

Natural Language
Description

Mapping
Components

Intended
Script

Natural Language
Q&A (Optional)

1

2

3

5

User

Feedback on
Description (Optional)

6

Feedback on
Comp. Mapping

4

Figure 1: SmartSynth’s system architecture.

vant components (i.e. script constructs) and a partial set of dataflow
relations among the components, and (3) techniques inspired by the
program synthesis community to complete the partial set of dataflow
relations via type-based program synthesis [15,27,32] and construct
the desired scripts via reverse parsing [2].

Indeed, we combine and refine recent advances in both the NLP
and program synthesis areas. A recent, emerging trend in NLP is se-
mantic understanding of natural languages. There have been recent,
although limited, successes in translating structured English into
database queries [4] and translating NL statements into logic in spe-
cific domains [9, 20]. As for program synthesis, the traditional goal
has been to discover new or complicated algorithms from complete
logical specifications. There is recent, renewed interest in this area
of synthesis because of (1) interesting applications (such as end-user
programming [14] and intelligent tutoring systems [13]), and (2)
the ability to deal with under-specifications (such as examples [14],
and a set of APIs or keywords [15, 24]). Our combination of NLP
and program synthesis is synergistic since NLP is used to “partially
understand” natural language and program synthesis is then used to
refine this understanding and generate the intended script.

Figure 1 illustrates SmartSynth’s process of synthesizing scripts.
The user communicates her intent via natural language (Step 1).
The “Component Discovery” box contains two algorithms that are
inspired by the NLP area: (i) a mapping algorithm that maps the
description into script components such as APIs and literals (Step 3),
and (ii) an algorithm that asks the user to refine parts of the de-
scription that SmartSynth does not understand (Step 2). The “Script
Discovery” box first uses an NLP-based algorithm to detect dataflow
relations among the identified components. If these relations do
not fully specify the dataflow relationships between components,
SmartSynth invokes our algorithm (inspired by type-based synthe-
sis) to complete the missing dataflow relations. If there are multiple
equally high-ranked relations, SmartSynth initiates an interactive
conversation with the user to resolve the ambiguities (Step 5). As
the final step, it constructs the intended script from the identified
components and relations using an algorithm akin to reverse parsing.

An interesting feature of SmartSynth is the NLP-Synthesis feed-
back loop in Steps 3-4. Although our NLP algorithm has its own
mapping feature set to perform component mapping, it might not
precisely capture the mapping in some cases, due to irregularities
of natural language. SmartSynth uses program synthesis technique
to gain confidence about the quality of the generated script and as

Figure 2: A visual program for Example 1 written in AppInventor.

another metric for the quality of NLP mapping. In particular, Smart-
Synth repeatedly requests the NLP-based algorithm for the next
likely interpretation of the description, if the current interpretation
is deemed unlikely (i.e., the interpretation does not translate to a
high-confidence script).

Contributions We make the following contributions:

• We introduce an automation language SmartScript that is
expressive enough to represent a wide variety of automation
scripts discussed on online forums, while at the same time
restrictive enough to enable efficient search over the program
space (Section 3).

• We present an algorithm for generating likely SmartScript

scripts from natural language descriptions (Section 4). Our
algorithm involves three key technical steps: (1) generation of
script components, (2) generation of dataflow relations among
those components, and (3) constructing the script from the
components and dataflow relations. The first and second steps
leverage techniques from NLP, while the second and third
steps leverage techniques from program synthesis.

• We have implemented our technique and evaluated it on 50
different tasks collected from smartphone help forums. Our
results show that SmartSynth is effective — it can generate
the intended scripts in real time for over 90% of the 640
NL descriptions collected via a user study (Section 5). We
have also extended SmartSynth to TouchDevelop, which has
a much larger grammar and API set, with similar positive
results. A video demo of the extended system is available at
http://www.cs.ucdavis.edu/~su/smartsynth.mp4.

Paper Organization The rest of the paper is structured as follows.
We first use a concrete example to motivate and illustrate Smart-
Synth (Section 2). Section 3 introduces our DSL SmartScript and
defines the notion of script components. Sections 4 presents three
key steps of SmartSynth— mapping NL descriptions to compo-
nents, detecting dataflow relations among the identified components,
and synthesizing scripts from these components and relations. We
then present our detailed evaluation of SmartSynth (Section 5). We
discuss related work in Section 6 and conclude in Section 7.

2. EXAMPLE
We motivate our system via the following running example, taken

from a help forum for Tasker [7].

EXAMPLE 1. The user wants to create a script to do the follow-
ing when she receives an SMS while driving: (1) read the content

http://www.cs.ucdavis.edu/~su/smartsynth.mp4

Number

String

MessageReceived SendMessage

Number

String

“I’m driving...”

String

Source types

Sink types

Mapping components

Data-flow edge

IsConnectedToBTDevice

Bluetooth

Car’s Bluetooth

Bluetooth

Figure 3: The graph showing all possible dataflow relations among
components identified by the Component Discovery algorithms.

of the message and (2) send a message “I’m driving” to the sender.
Since the user always connects her car’s bluetooth to the phone
when she is in the car, she uses this fact to denote that she is driv-
ing1. One possible description of this script is:

“When I receive a new SMS, if the phone is connected
to my car’s bluetooth, it reads out loud the message
content and replies the sender “I’m driving.”.”

Users of both conventional and visual programming systems have
to deal with all the low-level details and make several decisions,
often unintuitive to them, during the process of creating a new pro-
gram. In contrast, users of SmartSynth only need to give the system
their problem description in NL, and interact with it, if necessary,
in natural language. Below we compare traditional programming
systems with SmartSynth using our example.

Identifying Components Users of conventional and visual pro-
gramming systems have to conceptualize their ideas into script
components (i.e., script constructs such as APIs), potentially under
several refinement steps [40]. This is a non-trivial task as it assumes
that users should understand all script constructs’ specifications.
As shown in Figure 2, users of AppInventor have to conceptualize
and identify various components while transforming the idea in
Example 1 into a running script.

In comparison, SmartSynth automatically decomposes the de-
scription into disjoint text chunks and matches each chunk to its
supported components (details in Section 4.1). For the description
in Example 1, SmartSynth is able to decompose and match the de-
scription to the components shown in Table 1. When any chunk of
the description cannot be mapped to a component, SmartSynth will
ask the user to refine the chunk.

However, as is often the case in NLP, mapping a chunk to compo-
nents can be ambiguous. For example, we can map “if the phone is
connected to” to any of the three candidates shown in Table 1. Simi-
larly, we can map “replies” to either SendMessage or SendEmail.
One can look at API arguments to resolve these ambiguities. In the
first case, since the argument is a bluetooth device, it is very likely
that the mapping component is IsConnectedToBTDevice. But
this approach does not work as well for the second case, where the
ambiguity can only be resolved by considering the global context
that may indicate receipt or sending of an SMS.

SmartSynth takes a different approach. Instead of manually
encoding many disambiguation rules, it relies on the techniques
1 In fact, this is a clever workaround to avoid using the GPS sensor,
which drains the battery power very quickly.

Description Possible Mappings
When I receive a

MessageReceivednew SMS

if the phone is
connected to

IsConnectedToBTDevice

IsConnectedToWifiNetwork

IsConnectedToDataService

my car’s bluetooth Car_BT

reads out loud Speak

the message content MessageReceived.TextO

replies SendMessage

SendEmail

the sender MessageReceived.NumberO
“I’m driving” "I’m driving"

Table 1: Possible mappings from text chunks to components in Ex. 1.
TextO and NumberO are return values of MessageReceived.

inspired by type-based synthesis to automatically disambiguate
mapping candidates. Specifically, from each mapping candidate
that needs to be resolved, SmartSynth generates a script and as-
signs it a score indicating how likely the script is. The best map-
ping is associated with the script that has the highest score. In
Example 1, SmartSynth is able to select the right mapping set
(IsConnectedToBTDevice, SendMessage and the others) because
together they form the highest ranked script.

Synthesizing Scripts Besides identifying all necessary components,
users of conventional systems also need to understand the compo-
nents’ low-level details in order to assemble them meaningfully.

To create the script in Figure 2, the users must understand that
MessageReceived is an event and returns a phone number and a
message content, which may be stored in two temporary variables.
They need to understand that IsDevicePaired is the guard of the
conditional and it must be linked with the car’s bluetooth. Also, the
APIs Speak and SendMessage must be configured with arguments
of types Text and Number & Text respectively. Finally, the users
need to pass the temporary variables/literals to those APIs and
arrange them in the correct order.

In contrast, users of SmartSynth are not required to understand
those low-level details because the system knows the signatures
of all those APIs. The challenge is to generate additional script
constructs such as loops, conditionals and assignments to combine
these components together into a script reflecting the user’s intent.
SmartSynth solves this challenge in the following steps (details in
Section 4.2). First, it builds a special data structure that represents
all possible dataflow relations among the components. We call each
of them a (dataflow) relation. Figure 3 shows the data structure
for the right component mapping set. An edge in this figure repre-
sents a relation, which specifies a possible dataflow from a value
(source) to an API’s parameter (sink). The value from a source
might be assigned to multiple sinks (if they have the same type),
and a sink might receive a value from different sources (also of the
same type). For example, the sink denoting the message content
in SendMessage can be assigned to the argument from either the
received message of MessageReceived, or the string literal “I’m
driving” because they have the same type String.

Next, SmartSynth uses classic NLP techniques [19] to detect
likely relations from the NL description. These relations must be
derived from the set of all possible relations embedded in the graph.
Table 2 shows the relations that SmartSynth has detected from the
description. A row in this table represents a relation defining which
source is assigned to a sink. For example, the last row states that

Return value or Literal API Parameter

Car_BT
IsConnectedToBT-

Device.BluetoothI
MessageReceived.TextO ReadText.TextI
MessageReceived.NumberO SendMessage.NumberI
"I’m driving" SendMessage.TextI

Table 2: Relations detected from Example 1’s description. Sub-
scripts I/O characterize the field of an API as a parameter or a
return value.

the message content to be sent by SendMessage is the string literal
“I’m driving”. SmartSynth generates and returns the final script to
the user if it is able to detect all necessary relations from the NL
description (Figure 4).

when (number, content) := MessageReceived()
if (IsConnectedToBTDevice(Car_BT) then

Speak(content);
SendMessage(number, "I’m driving");

Figure 4: The script for Example 1.

However, since users can give free-form descriptions, SmartSynth
may often detect only a subset of the necessary relations. In these
cases where the intent is under-specified, SmartSynth uses tech-
niques inspired by type-based synthesis to find the missing relations.
It performs searching over the dataflow graph for missing relations
and uses a special ranking scheme to prioritize more likely relations.
SmartSynth then uses these newly discovered relations to generate
the most likely script and returns it to the user.

As an example, suppose that the user had given a slightly different
description “. . . and send back. . . ” (instead of “. . . and replies the
sender. . . ”) and also suppose that SmartSynth does not model this
mapping and thus is unable to extract the third relation between
MessageReceived.NumberO and SendMessage.NumberI in Ta-
ble 2. Nonetheless, SmartSynth can discover this missing relation
and generate the same script as in Figure 4.

3. AUTOMATION SCRIPT LANGUAGE
In this paper, we use a scripting language SmartScript (Fig-

ure 5) with representative features of the current smartphone genera-
tion. Since SmartScript is an intermediate language, we can port it
to other mobile platforms via simple syntax-directed translation [2].

3.1 Language Features
We have designed SmartScript from an extensive study of the

scripts from various smartphone help forums. This design process is
an interesting exercise to balance the trade-offs between the expres-
siveness of SmartScript and the effectiveness of SmartSynth. The
restrictions that we place in SmartScript (event and conditionals
only appear at the top of the script) allow SmartSynth to perform
type-based synthesis more effectively under the uncertainties in NL
processing.

A script P in SmartScript represents a task that executes a se-
quence of actions under a certain condition. It has some parameters
I (which will be entered by users when the script runs) and may
be triggered by an event E. When the event occurs, it generates
some variables. The conversions T converts these variables into
new types that are used in the condition C. The condition is then
evaluated and if it holds, the main body M is executed.

Script P ::= I E T C M

Parameter I ::= input(i1, . . . , in) | ε
Event E ::= (r1, . . . , rn) := when Event() | ε

Conversions T ::= F1; . . . ;Fn;

Condition C ::= if (Π1 ∧ · · · ∧Πn) then
Body M ::= Stmt1; . . . ;Stmtn;

Conversion F ::= x := Convert(a)

Predicate Π ::= Predicate(a1, . . . , an)

Stmt. Stmt ::= S

| foreach x ∈ a
do S1; . . . ;Sn; od

Atom. Stmt. S ::= A | F
Action A ::= (r1, . . . , rn) := Action(a1, . . . , an)

Argument a ::= x | i | r | l

Figure 5: The syntax of automation language: x, i, r, l refer to a
temporary variable, an argument of the script, a return value, and
a literal, respectively. The essential components identified by the
NLP techniques are underlined.

We use a few examples, each of which contains an NL description
and the synthesized script, to illustrate our key language constructs.

Event and Conditional

EXAMPLE 2. [Phone Locator] When the phone receive a new
text message, reply with my current location if the message content
is “Secret code”.

when (number, text) := MessageReceived
if (text = "Secret code") then

text2 := LocationToString(CurrentLocation);
SendMessage(number, text2);

API Composition

EXAMPLE 3. [Picture Uploader] Take a picture, add to it the
current location and upload to Facebook.

pic := TakePhoto();
text := LocationToString(CurrentLocation);
pic2 := AddTextToPhoto(pic, text);
UploadPhotoToFacebook(pic2);

Loops

EXAMPLE 4. [Group Texting] Send my current location to 111-
1111 and 222-2222.

text := LocationToString(CurrentLocation);
foreach number in {111-1111, 222-2222} do

SendMessage(number, text);
od

3.2 Essential Components
Script components (constructs) in SmartScript are not equally

important. A component is essential to the semantics of the script if
we cannot reconstruct the script once we have removed the compo-
nent from it. On the other hand, a component is not essential if we
are still able to reconstruct the script if the component is removed. In
order to successfully generate the intended script, SmartSynth must
be able to identify all essential components from an NL description.

In Figure 5, we underline all SmartScript’s essential compo-
nents. An essential component in SmartScript is either an API
or an entity. While APIs are pre-defined and related to smartphone
functionalities, entities correspond to personal data. This mixture
enables the easy creation of personalized automation scripts.

APIs We have created a representative set of 106 APIs that cover
most of the available functionalities of the current generation of
smartphones. We annotate each API with a set of weighted tags
(used by the mapping algorithm to map text chunks to appropriate
components), and a type signature (used by the synthesis algorithm
to generate only type-safe scripts). The tag set is weighted since
some tags are more indicative of a component than others.

We classify the APIs into the following categories to match the
constructs in SmartScript:

• Events: These represent events that occur on the phone.
For example, the event of receiving a new text message
(MessageReceived), or the event of receiving a phone call
(IncomingCall). These events trigger script execution.

• Predicates: These denote conditions on the state of the phone.
For example, there are text messages that the user has not read
(HasUnreadMessages), or the phone is in landscape orienta-
tion (IsInLandscapeMode). They also include comparison
operators (e.g.,<,>, and =). Predicates restrict the condition
under which the script is executed.

• Actions: These are normal phone operations, such as turning
off wifi or bluetooth connection (TurnWifiOff, TurnBlue-
toothOff), muting the phone (MutePhone), taking a pic-
ture (TakePhoto), or sending a text message (SendMessage).
SmartSynth executes a sequence of actions in a script’s body
when its event is triggered and the predicates are satisfied.

Entities Entities represent values that are passed among APIs inside
a script. An entity is one of the following:

• Return values: These are return values of our representa-
tive APIs. For example, the content of the received mes-
sage (MessageReceived.TextO), the caller of incoming
call (IncomingCall.NumberO).

• Literals: These are personal data items from the user’s phone
(e.g., a contact in her address book, her bluetooth headset, her
music collection, her current location) or generic values (e.g.,
a string “I’m driving”, the time 10pm).

The purpose of identifying APIs is to form the script’s skeleton,
while that of capturing entities is to prepare for building the data-
flow relations among these identified APIs in a later step. We discuss
the details of our algorithm next.

4. SYNTHESIS ALGORITHM
The key observation behind our synthesis algorithm is that a

SmartScript script can be constructed from its constituent set

of essential components and the dataflow relations among those
components. This observation allows us to reduce our original
problem of synthesizing a SmartScript script from an NL descrip-
tion to the following three sub-problems: (a) identifying essential
components (Section 4.1), (b) identifying their dataflow relations
(Section 4.2.1), and (c) constructing the script from the components
and their dataflow relations (Section 4.2.2). We use techniques in-
spired from both the NLP and program synthesis communities to
solve these sub-problems.

We first use an algorithm inspired by NLP techniques to map the
given NL description to a set of essential components. We then use
rule-based relation detection algorithm (a classic NLP technique) to
extract dataflow relations among the identified components. Since
this algorithm may not be able to extract all relations, we use a
technique inspired by type-based synthesis to find the likely missing
relations. Finally, we use the components and their relations to
construct the script and return it to the user. We explain these
algorithms in detail next.

4.1 Component Discovery
We assume that for every NL description, there exists a decom-

position of that description into disjoint text chunks, where each of
the text chunks can be mapped to a component. It is expected that
there are many possible ways to decompose a given description into
chunks. Furthermore, each of the chunks can be mapped to many
possible components. Thus, the space of all possible mappings from
an NL description to a set of components is large. The key high-
level insight of our component discovery algorithm is to consider
all possible mappings (to gain high recall) in a ranked order (to gain
high precision).

To this end, we have developed an effective data structure that
efficiently stores all possible description decompositions, and the
supportive and refutative features used to map these decompositions
into components. We then find the best component mapping from
this data structure.

Mapping Data Structure Our data structure is a weighted directed
graph 〈V,E〉 where

• V is a set of vertices. Each vertex represents a cut between
two consecutive words in the description.

• E is a set of edges. An edge (vi, vj) denotes a chunk of text
that starts from the vertex vi and ends at the vertex vj .

For each edge in E, we need to calculate the confidence of map-
ping its text chunk to a particular component. We use mapping
features to calculate this score.

Mapping Features A feature h is a function that returns the
confidence score of mapping an edge in our data structure to a
component. In other words, it indicates how likely a text chunk
(represented by the edge) is mapped to a certain component, among
all possible components.

Currently, our system uses the following features:

• Regular expressions: We use a set of regular expressions
to extract entities. A chunk is likely mapped to an entity if
it matches the corresponding regular expression. For each
entity that is an API’s return value, we create a set of com-
mon terms that people might call it. For example, we as-
sociate MessageReceived.TextO with “message content”,
“received content”, and “received message”. To extract literal
entities (e.g., the time “10pm”, the number “123-4567”), we
define regular expressions for all data types used in Smart-
Synth.

• Bags-of-words: We use the bags-of-words model [19] to
categorize a chunk as representing some APIs. A chunk
is more likely mapped to an API if it contains more words
that are related to the API’s tags. For example, it is more
likely to map “send a text” to SendMessage than to map the
single word “send” to the same API, because the tag set of
SendMessage contains both “send” and “text”.

• Phrase length: This feature gives a negative score to a map-
ping (between a chunk and a component) if the chunk is either
too long or too short.

• Punctuation: A punctuation is an indication of the start or
end of a chunk. Therefore, chunks that start or end with
punctuations have higher scores.

• Parse tree: Although NLP parsers may not provide precise
parse trees, they are still useful because these parse trees
are partially correct, and we can exploit them to gain higher
mapping confidence. For example, if a parse tree indicates
that a text chunk is a noun phrase, it increases the confidence
of mapping this chunk to entities. Also, if the main verb in
a chunk matches a verb in an action API, it is more likely to
map the chunk to this API. In our implementation, we use the
Stanford NLP parser [21].

The above features give different scores for mapping a text chunk
to a component. The aggregate function combines these scores into
a single score. In our implementation, the aggregate function is a
weighted sum of all feature scores. It is formally defined as follows:

f(e, c) =
∑
hi∈F

wi ∗ hi(e, c)

where e is the edge that contains the text chunk, c is the component
that e maps to, F is the feature set, wi is the feature weight.

For each edge, we select the mapped component whose aggregate
score is the highest. This score becomes the edge’s weight in the
data structure.

mapping(e) = {〈c, f(e, c)〉 | c ∈ argmax
c∈C

f(e, c)}

where argmax returns the components that maximize the value of
the function f .

We store all related information in the data structure to make
a global decision based on all the features. The next step is to
extract the best mappings for the whole NL description from the
data structure.

Finding the Best Mapping A path from the start node to the end
node decomposes the descriptions into several disjoint text chunks.
Each chunk is mapped to a component with a confidence score
represented by the weight of its corresponding edge. The total
confidence score of mapping the whole description to a component
set is the total weight of the corresponding path. Thus, the best
mapping (which has the highest total confidence score) corresponds
to the longest path in the graph.

4.2 Script Discovery
Once SmartSynth has discovered the set of essential components,

it uses the following ingredients to synthesize the intended script:
(1) type signature of the components, (2) structural constraints im-
posed by the automation script language, (3) spatial locality of the
components in the natural language description, and (4) an effective
ranking scheme.

C1
typeof
(C2)

typeof
(C3) Relations

IsConnected-
BT 〈C2, C1.BTI〉

ToBTDevice

ReadText Text 〈C2, C1.TextI〉

SendMessage Number Text
〈C2, C1.NumberI〉
〈C3, C1.TextI〉

Table 3: Some rules to detect relations in Example 1. C1, C2, C3 is
a sequence of identified components.

The overall process works as follows. Using typing information,
SmartSynth builds a dataflow graph to capture all possible dataflow
relations among the provided components. It uses a classic NLP
technique to extract dataflow relations from the relative orders of
the identified components. If the set of extracted relations is in-
complete, SmartSynth utilizes the dataflow graph and a ranking
scheme to identify the most likely missing relations. SmartSynth
then constructs the intended script from the identified components
and relations via a process akin to reverse parsing, and returns the
script to the user. Next, we discuss these steps in detail.

4.2.1 Dataflow Relations Discovery
Dataflows are essential in determining the intended script. If

components are building bricks, dataflows are the cement to glue the
bricks together to form scripts. The key insight in this process is to
use an NLP technique to detect a (partial) set of (high-confidence)
dataflow relations followed by a type-based synthesis technique to
complete this set using type signatures of components and a ranking
scheme.

DEFINITION 1 (DATAFLOW RELATION). A dataflow relation
is an ordered pair of a source (i.e., an API return value or a literal)
and a sink (i.e., an API parameter), representing a value assignment
from the source to the sink.

Dataflow Graph We build the graph GC = 〈V,E〉 that concisely
captures all dataflow relations among the identified components C
as follows:

• V is the set of all sources and sinks in C.

• E is the set of all directed dataflow edges from sources to
sinks, such that they are type-compatible. Each edge in E
represents a dataflow relation between a source and a sink.

A source type τ1 is type-compatible with a sink type τ2 if they
have the same type or τ1 is a list of type τ2 (we use the later case to
generate loops).

The task of SmartSynth is to determine which relations are most
relevant in GC . It does this in two steps. First, it detects dataflow
relations among components from their relative locations in the
description. When necessary, it uses type-based synthesis techniques
to infer additional relations from the dataflow graph.

Detecting Partial Dataflow Relations We use rule-based relation
detection algorithm, a standard NLP technique, to detect dataflow
relations among the identified components. Since all of our APIs
are pre-defined and structured (each API is annotated with its type
signature), we are able to manually compile a set of rules to ex-
tract relations based on the order of how components appear in the
sentence. Specifically, if an API component is followed by entities
having types that match its signature, those entities are likely to be
the API’s arguments.

Algorithm 1: Discovering the most likely complete dataflow set

Input : component set C, partial relation set R̃
Output : the most likely complete dataflow set Rtop

1 begin
2 GC ← BuildDataFlowGraph(C)
3 Tall ← {t | t is sink in GC .V }
4 Tconc ← {t | 〈s, t〉 ∈ R̃}
5 T̃ ← Tall \ Tconc // to be concret’d sinks

6 R← {ArbitraryRelationSet(R̃)}
7 Q ← {〈R̃, T̃ 〉}
8 whileQ 6= {} do
9 〈R, T 〉 ← Q.Dequeue()

10 if MinCost(R) ≤ MaxCost(R) then
11 if T = ∅ & GenCode(R) ∈ SmartScript then
12 if Cost(R) < MaxCost(R) then
13 R← {R}
14 else if Cost(R) = MaxCost(R) then
15 R← R∪ {R}
16 else /* explore child spaces */

17 t← choose(T)
18 foreach (s, t) ∈ GC .Ev do
19 Q.Enqueue(〈R ∪ 〈s, t〉, T \ t〉)

20 else ; /* prune this branch */

21 ifR = ∅ then Rtop ← ⊥
22 else ifR = {R} then Rtop ← R
23 else Rtop ← PerformConversation(R)
24 return Rtop

Table 3 shows three rules for detecting all relations in Example 1.
The first rule states that if the entity following IsConnectedToBT-

Device has type BT, there is a relation between those two.
We remark that these rules can be learned automatically using

supervised learning [19,20]. However, in a manageable domain like
ours, expert rules work quite well. The Stanford NLP parser also
uses hand-written rules to extract typed dependencies (grammatical
relations between words) [28].

Even though our algorithm works fairly effectively, it is unable
to detect all relations within a description, as is typically the case
with NLP algorithms. In these cases, SmartSynth relies on recent
advances in modern program synthesis to complete the relation
set and generates the final script. Without the synthesis algorithm,
SmartSynth would halt here and ask the user to refine the description
despite that it might be entirely correct.

Completing the Relation Set The goal here is to discover missing
relations to form a complete dataflow set that can be turned into a
script in a later phase. We use a specialized ranking scheme to find
the most likely complete dataflow set among all possible sets.

DEFINITION 2 (COMPLETE DATAFLOW SET). A set GC of
dataflow relations among components in C is complete if every
sink of a component in C has one and only one relation associated
with it. This dataflow set fully specifies how arguments are passed
to all the sinks in C.

Algorithm 1 describes the process of completing the dataflow set.
At the high-level, SmartSynth performs search over the dataflow
graph to find the best dataflow setsR for the sinks T̃ that have not
been assigned any values (line 5). SmartSynth uses the ranking

Algorithm 2: Script Construction
Input : component set C, dataflow set R
Output : an automation script

1 begin
/* generate temporary variables */

2 foreach source τ ∈ C do
3 SymTable[τ]← new variable

/* assign sources’ vars to sinks */

4 foreach (τs, τt) ∈ C.E do
5 SymTable[τt]← SymTable[τs]

6 I ← live input variables in C
7 E ← ⊥
8 if ∃e ∈ C : e is event then E ← e
9 C ←

∧
i Πi where Πi is a predicate in C

10 T ← conversion functions used by C
11 M ← the rest of actions and conversion functions in g

/* generate the foreach loop */

12 foreach (τs, τt) ∈ g.Ev s.t. τs = List〈τt〉 do
13 s← the subgraph reachable from τt
14 SymTable[τt]← new variable

/* replace s by foreach stmt */

15 M ←M [(foreach SymTable[τt] ∈ SymTable[τs]
16 do s od) / s]

17 P ← 〈I, E, T, C,M〉
18 return P

scheme (represented by Cost) to guide the search towards more
likely relations (lines 12, 14). It enforces structural constraints
imposed by SmartScript by eliminating dataflow sets that do not
conform to the language (line 11). To speed up the discovery process,
our algorithm implements the general branch-and-bound algorithm.
It ignores a search sub-space if the minimum cost (MinCost) of all
dataflow sets in that space is greater than that of the current set (lines
10 and 20).

One important aspect of Algorithm 1 is our specialized ranking
scheme, which helps prioritize the search process toward the script
that most likely matches the user’s intention. We next discuss the
ranking scheme.

Ranking Scheme Our high-level insight behind the ranking scheme
is to give preferences to those scripts (1) that have greater coupling
among the components, (2) that are more generally applicable, or
(3) that require fewer user inputs.

We define a set of (negative) cost metrics to realize the above
insight, each of which defines a less likely or less preferred feature
of a script. The Cost function is simply the sum of the costs given
by each of them:

• Unused Variable Cost: This metric gives a unit cost to each
unused variable generated by SmartSynth. It promotes scripts
that have better coupling among components.

• Parameter Cost: This metric gives a unit cost for each of
parameters the script uses. This is because users normally do
not want to configure the script when it runs. They often want
fully automatic scripts.

• Domain-Specific Cost: This metric contains expert rules that
capture what people usually do in practice. For example, in
the messaging domain, we punish the script if the replied
message is the same as the content of the received message.

Algorithm 3: The overall algorithm of SmartSynth.
Input : NL description d
Output : script P , or request to refine (parts of) d

1 begin
2 Gd ← BuildDataFlowGraph(d)
3 if Gd is connected then
4 C ← BestMapping(Gd)

5 R̃← DetectRelations(C)
6 while MappingScore(〈C, R̃〉) < δ do

/* mapping score too low */

7 C ← NextBestMapping()

8 R̃← DetectRelations(C)
9 if C 6= ∅ then /* mapping exists */

10 R← CompleteRelations(〈C, R̃〉)
11 ifR > 1 then

/* equally ranked sets */

12 R← QuestionAnswering(R)

13 else R←R.First()
14 return GenerateCode(〈C, R〉)

/* refine the whole desc. */

15 return AskForRefinement(d)

16 else /* refine nonmappable phrases */

17 l← DisconnectedSubGraphs(Gd)
18 return AskForRefinement(l)

This ranking scheme work quite effectively for our problem do-
main. However, in the presence of a large amount of user data, we
can build a probabilistic ranking model. We are investigating this
option for the TouchDevelop domain from its thousands of scripts
contributed by its users.

4.2.2 Script Construction
At this point, SmartSynth has found a set of components and a

complete set of dataflow relations. It now uses Algorithm 2 to con-
struct the intended script. This process is the reverse of the normal
parsing process in a compiler. A compiler breaks down a program
into components and dataflow relations to enable optimizations and
low-level code generation. In contrast, the SmartSynth synthesizes
the script structure from its building pieces, namely the components
and their dataflow relations. During this synthesis process, Smart-
Synth needs to: (1) generate code to pass arguments to APIs, (2)
generate conditionals, and (3) generate loops.

SmartSynth generates a temporary variable for each API return
value, and, based on the dataflow set identified in the previous
steps, passes these variables as arguments to other APIs (line 2-
5). Next, it extracts the event and conditionals from the event and
predicate components to form the guard of the script (lines 8-9).
The remaining action APIs form the body.

The most interesting aspect of the script construction process is
loop generation. SmartSynth generates a looping construct if there
is a relation from a collection to an API parameter (lines 12-16). For
example, the user may say “send Joe and John my current location."
Although the user does not explicitly mention the word “loop”, it
would be her intention to use a loop. In particular, SmartSynth
detects that there is a relation between the group {Joe, John} and
SendMessage.NumberI , and generates a loop to send messages to
both Joe and John.

4.3 SmartSynth
Having described the two technical components (namely Com-

ponent Discovery and Script Discovery), we now ready to formally
describe the rest of SmartSynth’s architecture in Figure 1.

Algorithm 3 implements all the components in the architecture.
It realizes our observation that a SmartScript script can be iden-
tified from its essential components and their dataflow relations.
Specifically, it uses NLP techniques to find components from the
provided NL description (line 4) and to detect some of relations
(line 5). It then invokes the synthesis algorithm to complete the
dataflow relations (line 10), and to synthesize the final script in line
14. If nothing goes wrong, those steps correspond to the simplest
possible workflow in SmartSynth.

However, since it is dealing with end users and natural language,
SmartSynth faces many uncertainties. For example, users might give
irrelevant and/or ambiguous descriptions. We discuss SmartSynth’s
error handling mechanism next.

Handling Descriptions with Unsupported Functionalities Due to
their high expectation (and sometimes ignorance), users might ask
for functionalities that are not supported by SmartSynth.

If the given description is in-scope, there exists a meaningful
decomposition of the description into several chunks, and Smart-
Synth is able to map each of these chunks to a component. The
graph in this case is a connected graph. On the other hand, if one or
more parts of the description are out-of-scope, these parts cannot be
mapped to any component(s). The graph in this case is disconnected.
SmartSynth asks the user to refine the phrases corresponding to the
disconnected subgraphs that cannot be mapped to anything (line 17
in Algorithm 3, step 2 in Figure 1). Figure 6 visualizes this case.

Disconnected region
(Cannot be mapped to any components)

Connected regions
(Mapped to components)

.

Figure 6: A region in the description that cannot be mapped to any
component. SmartSynth reports its phrase to the user to clarify.

Handling Ambiguous NL Descriptions Although SmartSynth
uses multiple mapping features to increase the precision of the
component mapping process, there are cases where these features
cannot promote the best component mapping properly. This is
unavoidable because we cannot precisely model natural language
(due to its irregular nature).

SmartSynth resolves such cases via the feedback loop on lines 6-8
in Algorithm 3 (and Steps 3-4 in Figure 1). SmartSynth evaluates
the quality of the component mapping provided by the mapping
algorithm and repeatedly generates other interpretations of the NL
description, if the current one is unsatisfactory.

Handling Equally Likely Scripts When the ranking scheme cannot
differentiate the top dataflow sets, SmartSynth has multiple equally
ranked scripts at the top. In such cases, SmartSynth performs in-
teractive conversation with the user to eliminate undesired scripts
(line 12 in Algorithm 3, and Step 5 in Figure 1). It generates a
sequence of distinguishing multiple-choice questions based on these
candidates and presents them to the user, one question at a time. Her

answers help SmartSynth capture more constraints and eliminate
unintended dataflow sets.

The intuition behind the algorithm is that each question corre-
sponds to a sink that receives different values in those dataflow sets,
and the answer choices are those values that can be assigned to the
sink. When the user selects an answer, SmartSynth eliminates those
dataflow sets that do not correspond to the selected value.

Because the sink set is finite and known a priori (sinks are pa-
rameters of pre-defined APIs), we are able to build a database that
stores an NL question for each of the sinks. Similarly, we de-
fine NL representations for all the sources. SmartSynth generates
questions and answers by looking up the values of the correspond-
ing sinks and sources in the database. For example, for the sink
SendMessage.NumberI , SmartSynth generates the question “Who
do you want to send the SMS to?”. Suppose this sink is related to
two sources, MessageReceived.NumberO and 111-1111. They
will be presented as two answer choices “(A) The sender of the
received SMS” and “(B) The phone number 111-1111”.

5. EVALUATION
In this section, we evaluate the effectiveness of SmartSynth in

discovering the right set of components and their dataflow relations.
We also compare the overall performance of SmartSynth and the
system that employs only NLP techniques. We implemented Smart-
Synth in C#. All our experiments were run on a machine with an
Intel® i7 2.66 GHz CPU and 4 GB of RAM. We use the Stanford
NLP parser [21] wrapped under a public web service [1].

We compile the benchmark from task descriptions found in help
forums of Tasker [7], App Inventor [30], and TouchDevelop [38].
Among the 70 found descriptions, seven cannot be expressed in our
language SmartScript. Therefore, we remark that SmartScript
was able to express 90% of the kind of real-life examples that it
was designed for. All the inexpressible descriptions that we found
required synchronization between different tasks, possibly through
the use of some shared global variables or control-flow among
events. To illustrate, we describe below one of them; the other ones
are similar.

EXAMPLE 5. [Inexpressible in SmartScript] If there is an
unread SMS and the user has not turned the screen on, remind her
every 5 minutes.

This script has two synchronized tasks, which may be synchro-
nized using a global status variable denoting whether or not the
screen has been turned on. We plan to extend our language to allow
task synchronization as future work.

Of the remaining 63 task descriptions that are expressible in
SmartScript, 13 are similar to another one in the set. Table 4
shows the distinct 50 tasks. To collect NL descriptions for those
benchmark tasks, we conducted an online user study involving
freshman students. We provided a one page document describing
their task. We divided the benchmark into two sets that are roughly
equivalent in terms of complexity. The system randomly assigned
a student to one set. For each problem in an assigned set, we gave
the student its desired script in SmartScript as the specification,
and asked the student to give several NL descriptions that match the
given script.

Eleven students participated in the study, giving a total of 725
distinct descriptions for our 50 benchmark tasks. Among these given
descriptions, 640 match their respective specifications. We used
these 640 descriptions to evaluate SmartSynth.

In Table 4, column “Compnts” shows, for each task, the total
number of components that are identified from the description. The

0

20

40

60

80

100

[1] [1] [2] [1] [2] [3] [1][2][3][4] SmartSynth

Series1[1] Regex + Bags-of-Words [2] Phrase length
[3] Punctuation [4] Parse tree structure

Figure 7: The result of mapping phrases to components under in-
creasingly sophisticated configurations.

next two columns divide these components into APIs and entities.
Column “Relations” corresponds to the number of dataflow relations
for each task, and “Detected Relations” shows how many relations
on average the NLP-based algorithm can extract from various de-
scriptions. The last two columns show the average parsing time by
the Stanford NLP parser and the average total synthesis time under
ten runs. Note that the parsing time includes the communication
overhead to the web service provider. It dominates the total time by
SmartSynth.

Component Discovery We first evaluate the effectiveness of Smart-
Synth in mapping descriptions into components. Figure 7 shows the
precision of this process under increasingly sophisticated configu-
rations. The baseline algorithm (regular expression for entities and
bag-of-words for APIs) produces the right component set 64.3% of
the time. The algorithm combining all features achieves a 77.1% pre-
cision (the fourth column). These results indicate that the considered
features work harmoniously to improve the overall precision.

Component Discovery (with Feedback Loop) Since mapping from
descriptions to components tends to be ambiguous, SmartSynth
utilizes the feedback from the synthesis algorithm (see Section 4.3)
to gain higher mapping confidence. The last column of Figure 7
shows that the aid from the feedback loop helps improve the map-
ping precision to 90.3%. This proves that the synthesis feedback is
very effective in disambiguating mapping candidates. Note that we
measure precision by counting the number of sets that are mapped
entirely correctly, while in other settings, individual components are
counted. Their performance might be reduced when measured in
our context.

Dataflow Relation Detection (with NLP Technique) We now evalu-
ate the capability of SmartSynth in finding dataflow relations among
APIs and entities under the ideal case, i.e. when the components are
mapped correctly. Figure 8 shows some statistics on the number of
dataflow relations that the rule-based relation detection algorithm
can detect on benchmark tasks that are grouped by the number of
relations.

These results indicate that the rule-based relation detection al-
gorithm works quite effectively for tasks that have few relations.
Specifically, it found almost all relations in the 1-relation tasks and
nearly 86% relations in those having four. However, the rule-based
algorithm faces problems when the tasks contain more relations. In
particular, it could not detect nearly half of the relations in tasks
having 7 or more relations. In order to resolve this, SmartSynth
needs further support. Next, we measure the effectiveness of the

Test Brief description of the benchmark Compnts APIs Entities Relations Detected
Relations

tNLP
(ms)

ttotal
(ms)

1 Reply current location, read sender’s number and msg’s content 12 6 6 7 4.13 3,151 3,325
2 Reply current loc. and batt. level upon receiving a secret code 11 5 6 7 3.75 2,705 3,206
3 Phone locator by SMS 10 5 5 8 4.6 4,376 5,737
4 Text a friend when come nearby 8 3 5 4 2 1,102 1,137
5 Silent at night but ring for important contacts 8 3 5 4 3.14 2,544 2,617
6 Speak weather in the morning 7 3 4 3 1.67 388 405
7 Take a picture, add the location and upload to Facebook 7 4 3 4 3 837 875
8 Auto response to SMS at night 7 3 4 4 3.61 2,071 2,134
9 Alert and turn off connections when battery is low 7 6 1 1 1 2,402 2,878

10 Text wife when nearly finish a long commute 6 2 4 3 2.94 1,439 1,481
11 Send SMS at a particular time 6 2 4 3 2.60 1,173 1,210
12 Send an email when leaving the office 6 2 4 3 2.67 1,077 1,108
13 Send a message when kids are dropped at school 6 2 4 3 2.88 1,644 1,689
14 Send to a list of friends current location every 15 minutes 6 3 3 4 4 788 817
15 Reply busy message if connected to car’s bluetooth 6 3 3 3 2.19 2,723 2,811
16 Turn off GPS when connected to home wifi 5 2 3 1 1 737 779
17 Increase display timeout while running some apps 5 2 3 3 2 948 983
18 Auto answer calls when headset is connected 5 3 2 1 1 1,339 1,395
19 Block calls from a group of users 5 2 3 2 1.42 715 744
20 Connect to home wifi when disconnected from car’s bluetooth 5 2 3 2 2 1,234 1,292
21 Find direction from current loc. to the place a photo is taken 5 3 2 3 2.07 759 787
22 Turn off wifi and GPS at night 5 3 2 2 2 653 688
23 Ring loudly for important contacts 5 2 3 3 3 1,090 1,128
24 Lower volume when a loud friend is calling 5 2 3 3 3 1,539 1,584
25 Take a picture and add current time to it 5 3 2 3 1.88 486 507
26 Handsfree texting 5 3 2 2 1.36 1,246 1,290
27 Broadcast the received message from a group 5 2 3 4 3 827 859
28 Read the received message while connected to car’s bluetooth 5 3 2 2 1.90 1,122 1,176
29 Mute the phone if is in the theater 4 2 2 1 0.89 467 485
30 Disable screen rotation at night 4 2 2 2 2 413 436
31 Mute the phone if is in meeting 4 2 2 1 0.92 344 359
32 Turn on data service for apps that require data 4 2 2 2 1.76 1,501 1,547
33 Turn on GPS when apps requiried GPS are run 4 2 2 2 1 752 781
34 Send current location to a friend via SMS 4 2 2 3 2 272 284
35 Send an SMS with a secret code to trigger an alarm 4 2 2 1 1 912 947
36 Repeat caller name 4 3 1 2 1 441 459
37 Alert when receive an email with important subject 4 2 2 1 1 759 788
38 No text while driving 4 2 2 2 1.55 1,824 1,879
39 Ask to take the call if connected to car’s bluetooth 4 3 1 1 1 1,702 1,776
40 Launch Pandora when the headphone is plugged 3 2 1 1 1 310 327
41 Reduce the volume when headset is plugged in 3 2 1 1 1 361 379
42 Keep screen awake when using the keyboard 3 2 1 1 1 414 434
43 Maximize screen brightness for calls 3 2 1 1 1 406 424
44 Turn off ringer by turning the phone down 3 3 0 0 0 718 757
45 Lay the phone down to switch to speaker 3 3 0 0 0 792 827
46 Show direction from current loc. to previously saved loc. 3 2 1 2 2 661 696
47 Open the keyboard and start texting 2 2 0 0 0 199 211
48 Unplug headset to pause media player 2 2 0 0 0 219 231
49 Play alert sound when battery is full 2 2 0 0 0 221 233
50 Send a text message to a group 2 1 1 3 2 387 402

Table 4: Characteristics of the benchmark set extracted from smartphone help forums.

0

1

2

3

4

5

6

1 2 3 4 7 8

D

et
ec

te
d

 R
el

at
io

n
s

Relations

Figure 8: The number of dataflow relations detected by the rule-
based algorithm for various tasks grouped by relation number.

synthesis-based algorithm in assisting the rule-based algorithm to
complete those missing relations.

Dataflow Relation Completion (with Synthesis Technique) Fig-
ure 9 shows that in nearly a quarter of the cases, the rule-based
algorithm failed to detect all the dataflow relations in the solution
set. Furthermore, the failure rate is proportional to the number of
dataflow relations in the task descriptions. These indicates that
pure NLP techniques do not scale well with complicated tasks. By
employing the relation completion algorithm inspired by program
synthesis area, SmartSynth was able to complete the dataflow sets
and synthesize the desired scripts. In general, the synthesis-inspired
algorithm is more useful with more complicated scripts, where the
failure rate of detecting all relations using only NLP techniques is
close to 100%.

Overall Performance Should SmartSynth only use NLP techniques
and not employ the synthesis-inspired algorithm, it would suffer
from the ambiguity of mapping descriptions to components and the
uncertainty of extracting their relations. As a result, it might not
be able to generate the user’s intended script. Evaluated on our
data, such system only returns the intended script 58.7% of the time
(mostly with simple descriptions).

With the appearance of techniques inspired by program synthesis
area, SmartSynth both improves its component identification (from
the feedback loop) as well as its relation discovery (from additional
relations found using the relation completion algorithm). Smart-
Synth achieves the 90% accuracy by combining the strength of the
two research areas.

SmartSynth works quite well once it combines the strength of
both NLP and synthesis communities. However, it might fail to
generate the intended script sometimes. We discuss such cases next.

Discussion Given the NL description is grammatically correct
and in-scope, there are two possibilities for SmartSynth to fail in
generating the intended script. The first possibility is when users ask
for a script that is not expressible in SmartScript. When design-
ing SmartScript, we carefully balanced the trade-offs between
language expressiveness and synthesis effectiveness. We can ex-
tend SmartScript to cover more scripts, but this also expands the
search space, and may make the completion algorithm less scalable
and the ranking scheme less effective. Nonetheless, SmartScript
is able to express 90% of automation scripts that users care about
(see Section 5).

The second possibility is when SmartSynth captures the intent
from the NL description incorrectly. This is a common problem

0

50

100

150

200

250

0 1 2 3 4 7 8

D

e
sc

ri
p

ti
o

n
s

Relations

Completed by Synthesis-based Alg. Detected by NLP-based Alg.

Figure 9: The number of descriptions whose dataflow relations are
entirely detected by the rule-based algorithm (total 487) vs. those
that require completion by the completion algorithm (total 153),
grouped by the number of relations.

for any system that handles NL. Although it cannot completely
avoid incorrect mappings, SmartSynth alleviates this problem by
empowering the feedback loop, which estimates script likelihood
and repeatedly generates alternative interpretations of the provided
description, if the current script is not likely.

As with any programming paradigms that use examples or natural
language descriptions, the correctness of the synthesized script in
SmartSynth needs to be checked by the user. Another limitation of
SmartSynth is its tight integration with the API set and the English
language. To support any new APIs (or new languages), we have to
add new rules and possibly new ranking metrics. Interesting future
work is to learn these rules and ranking metrics automatically from
training data. Currently, we only support small tasks that can be de-
scribed in one-liners. We are considering expanding SmartScript

to support task descriptions that use multiple sentences.

6. RELATED WORK
We discuss related work from both NL understanding and pro-

gram synthesis.

Natural Language Interfaces (NLIs) There have been numerous
attempts to build NLIs for many other application domains such
as controlling robots [9], performing navigation [36], processing
XML [22], and most notably for querying databases (NLIDBs) [4].
To solve the NL ambiguity problem, NLIDBs normally accept only
a restricted subset of natural language [8, 18]. For example, in [8],
relative clauses must follow their noun phrases. In contrast, users of
SmartSynth can give free-form descriptions.

Another challenge in implementing NLIDBs is the capability to
perform conversations with users, where they can give anaphora
(referring to previous objects) and elliptical (incomplete) sentences
based on the context and previous query results [4]. Because of its
nature, SmartSynth does not have this problem. However, it does
provide feedback on the scope of queries and performs interactive
conversations with the user to resolve query ambiguities.

The main difference between SmartSynth and other NLIs is its
use of type-based synthesis algorithms. While other systems have
difficulties in extracting all necessary constraints, SmartSynth over-
comes this problem by exploiting the capabilities of working with
under-specifications of synthesis algorithms to complete the missing
dataflow relations. We believe that our approach is applicable for
building natural language interfaces for other domains as well.

Specification Extraction From NL Extracting specifications au-
tomatically from NL has long been a research dream. Kate et al.

propose an approach to transform NL to formal languages [20]. Xiao
et al. develop a template-based method to extract security policies
from NL software documentations [41]. Pandita et al. analyze API
descriptions to infer their method specifications [31]. Our approach
complements these existing approaches on specification extraction.
SmartSynth can also leverage advances in this area to improve its
NLP engine’s capability of identifying components and detecting
dataflow relations, which may reduce the burden on its synthesis
engine to complete the relations.

General-purpose Programming Using NL and Keywords Natu-
ralJava [33] is an attempt to bridge the gap between NL and general-
purpose programming languages. It performs translation from a
restricted form of NL, which is centralized around Java’s program-
ming concepts, to Java statements. It requires the user to think and
give descriptions at the syntactical level of Java. Little and Miller
propose a code completion tool that synthesizes the most likely Java
expression in a code context from a set of keywords [23]. Smart-
Synth is different, in that it synthesizes a complete script and does
not require extra contextual information.

Metafor [25, 26] considers the programming task as telling a
story. It automatically generates the program structure from a given
NL description. It can extract classes and method names from
the description, but the paper is unclear about how to extract the
constraints to form sequences of statements inside the methods.

Digital Assistants Siri [5] is a virtual personal assistant that allows
users to ask questions and give verbal commands. It originated from
the CALO project [37], the “largest known artificial intelligence
project in U.S. history” 2. Siri can handle a wide range of queries,
but only those that are simple and relate to a single phone function-
ality [6]. In other words, users cannot give complicated commands
that combine different phone features. Voice Action [10] is another
personal assistant application targeting Android phones. However,
it requires its users to give queries that fit pre-defined patterns. It
also does not allow compositions of supported functionalities.

In contrast, users of SmartSynth can give commands contain-
ing events, conditions, and actions without any restrictions. Thus,
SmartSynth provides users with greater flexibility and control over
their smartphones.

Program Synthesis Program synthesis is the task of automatically
synthesizing a program in some underlying domain-specific lan-
guage from a given specification using some search techniques [11].
It has been applied to various domains [11], including bit-vector
algorithms [15], graph algorithms, mutual exclusion algorithms, in-
tellisense for auto completion [17, 27], and spreadsheet macros [12,
14, 35]. In this paper, we apply program synthesis to a new end-
user programming domain of smartphone scripts. The traditional
intent specification mechanisms based on logical specifications or
examples are not useful here: Logical specifications are beyond
the expertise of end-users and not worth the effort for small scripts.
The by-example paradigm [13] does not apply since smartphone
scripts are not functional programs: they are event-based and have
side-effects. In contrast, we use natural language.

Our synthesis algorithm performs type-based synthesis that refers
to a class of search techniques that use typing information/abstrac-
tion to perform search and produces a ranked set of results. Type-
based synthesis has been used for various applications: synthesizing
snippets that can convert a given source type into a given target
type [17, 27], completing partial expressions [32]. , assembling a
given set of APIs into a program [15]. In each of these cases, the
programmer starts out with (incomplete) program structures and the

2http://sri.com/about/siri.html

underlying synthesis engine generates ranked completions/assem-
blies of these structures. SmartSynth is different from these systems
in two key ways: (i) SmartSynth does not require the user to start
out with program structures — these are automatically inferred from
NL descriptions; (ii) SmartSynth extracts relational information
from NL descriptions, which helps disambiguate between multiple
solutions and significantly improves the effectiveness of ranking.

7. CONCLUSION
There is a proliferation of programmable mobile systems, thanks

to the market for devices with various form factors and the compe-
tition. Natural user interfaces for programming are important for
two reasons. First, standard programming is beyond the expertise
of hundreds of millions of end-users or non-programmers. Second,
even programmers find it difficult to keep pace with new syntax and
APIs supported by new systems. To this end, we have proposed
SmartSynth for synthesizing smartphone automation scripts from
natural language descriptions. SmartSynth combines and refines
techniques from two different research areas, namely Natural Lan-
guage Processing and Program Synthesis. It is able to synthesize
the intended scripts, in real time, for over 90% of the 640 NL de-
scriptions obtained from a user study (involving 50 different tasks
collected from smartphone help forums).

We believe that our NL translation techniques can also be useful
for structured logical domains in education, such as elementary
geometry [16] and automata theory [3]. This can pave the way for
exciting advances in computer-aided education, such as automated
grading [3] and solution generation [16] given NL descriptions of
word problems.

Acknowledgments
We would like to thank our shepherd, Deepak Ganesan, and the
anonymous MobiSys reviewers for valuable feedback on earlier
drafts of this paper. This research was supported in part by NSF
grants 0917392 and 1117603, and a Microsoft SEIF award. The
information presented here does not necessarily reflect the position
or the policy of the government and no official endorsement should
be inferred.

8. REFERENCES
[1] http://nlp.naturalparsing.com/.
[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools (2nd Edition). Addison
Wesley, August 2006.

[3] R. Alur, L. D’Antoni, S. Gulwani, D. Kini, and
M. Viswanathan. Automated grading of dfa constructions. In
IJCAI, 2013.

[4] L. Androutsopoulos. Natural language interfaces to databases -
an introduction. Journal of Natural Language Engineering, 1,
1995.

[5] Apple. Siri for iPhone.
http://www.apple.com/iphone/features/siri.html.

[6] J. Aron. How innovative is Apple’s new voice assistant, Siri?
The New Scientist, 2011.

[7] Crafty Apps. Tasker for Android.
http://tasker.dinglisch.net/.

[8] S. S. Epstein. Transportable natural language processing
through simplicity–the PRE system. ACM Transactions on
Information Systems (TOIS), 3(2), 1985.

[9] C. Finucane, G. Jing, and H. Kress-Gazit. LTLMoP:
Experimenting with language, temporal logic and robot
control. In IEEE/RSJ ICIRS, 2010.

http://sri.com/about/siri.html
http://nlp.naturalparsing.com/
http://www.apple.com/iphone/features/siri.html
http://tasker.dinglisch.net/

[10] Google. Voice Actions for Android.
http://www.google.com/mobile/voice-actions/.

[11] S. Gulwani. Dimensions in program synthesis. In PPDP,
2010.

[12] S. Gulwani. Automating string processing in spreadsheets
using input-output examples. In POPL, 2011.

[13] S. Gulwani. Synthesis from examples: Interaction models and
algorithms. SYNASC, 2012. Invited talk paper.

[14] S. Gulwani, W. Harris, and R. Singh. Spreadsheet data
manipulation using examples. Communication of the ACM,
2012.

[15] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of
loop-free programs. In PLDI, 2011.

[16] S. Gulwani, V. Korthikanti, and A. Tiwari. Synthesizing
geometry constructions. In PLDI, 2011.

[17] T. Gvero, V. Kuncak, and R. Piskac. Interactive Synthesis of
Code Snippets. In CAV, 2011.

[18] G. Hendrix, E. Sacerdoti, D. Sagalowicz, and J. Slocum.
Developing a natural language interface to complex data.
ACM Transactions on Database Systems (TODS), 3(2), 1978.

[19] D. Jurafsky and J. H. Martin. Speech and Language
Processing: An Introduction to Natural Language Processing,
Computational Linguistics and Speech Recognition. Prentice
Hall, 2nd edition, 2008.

[20] R. J. Kate, Y. W. Wong, and R. J. Mooney. Learning to
transform natural to formal languages. In AAAI, 2005.

[21] D. Klein and C. D. Manning. Accurate unlexicalized parsing.
In ACL, 2003.

[22] Y. Li, H. Yang, and H. V. Jagadish. NaLIX: an interactive
natural language interface for querying XML. In ICMD, 2005.

[23] G. Little and R. C. Miller. Keyword programming in Java. In
ASE, 2007.

[24] G. Little and R. C. Miller. Keyword programming in Java.
ASE, 2009.

[25] H. Liu and H. Lieberman. Metafor: visualizing stories as code.
In IEEE IUI, 2005.

[26] H. Liu and H. Lieberman. Programmatic semantics for natural
language interfaces. In Extended Abstracts on Human Factors
in Computing Systems, 2005.

[27] D. Mandelin, L. Xu, R. Bodík, and D. Kimelman. Jungloid
mining: helping to navigate the api jungle. In PLDI, 2005.

[28] M. D. Marneffe, B. MacCartney, and C. D. Manning.
Generating typed dependency parses from phrase structure
parses. In LREC, 2006.

[29] Microsoft Research. on{X}. http://onx.ms/.
[30] MIT Center for Mobile Learning. MIT App Inventor for

Android. http://appinventor.mit.edu/.
[31] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and

A. Paradkar. Inferring method specifications from natural
language api descriptions. In ICSE, 2012.

[32] D. Perelman, S. Gulwani, T. Ball, and D. Grossman.
Type-directed completion of partial expressions. In PLDI,
2012.

[33] D. Price, E. Riloff, J. Zachary, and B. Harvey. NaturalJava: a
natural language interface for programming in Java. In IEEE
IUI, 2000.

[34] M.-R. Ra, B. Liu, T. L. Porta, and R. Govindan. Medusa: A
Programming Framework for Crowd-Sensing Applications. In
MobiSys, 2012.

[35] R. Singh and S. Gulwani. Learning semantic string
transformations from examples. VLDB, 2012.

[36] I. Song, F. Guedea, F. Karray, Y. Dai, and I. El Khalil. Natural
language interface for mobile robot navigation control. In
ISIC, 2004.

[37] SRI International. Cognitive Assistant that Learns and
Organizes. http://www.ai.sri.com/project/CALO.

[38] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich.
TouchDevelop: programming cloud-connected mobile devices
via touchscreen. In ONWARD, 2011.

[39] Two forty four a.m. LLC. Locale.
http://www.twofortyfouram.com/.

[40] N. Wirth. Program development by stepwise refinement.
Communication of the ACM, 14(4), 1971.

[41] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie.
Automated extraction of security policies from
natural-language software documents. In FSE, 2012.

[42] B. Yan and G. Chen. AppJoy: Appjoy: Personalized mobile
application discovery. In MobiSys, 2011.

http://www.google.com/mobile/voice-actions/
http://onx.ms/
http://appinventor.mit.edu/
http://www.ai.sri.com/project/CALO
http://www.twofortyfouram.com/

	Introduction
	Example
	Automation Script Language
	Language Features
	Essential Components

	Synthesis Algorithm
	Component Discovery
	Script Discovery
	Dataflow Relations Discovery
	Script Construction

	SmartSynth

	Evaluation
	Related Work
	Conclusion
	References

