
User Interaction Models for Disambiguation in
Programming by Example

Mikal Mayer
EPFL

Switzerland
mikael.mayer@epfl.ch

Gustavo Soares
UFCG

Campina Grande, Brazil
gsoares@dsc.ufcg.edu.br

Maxim Grechkin
University of Washington

Seattle, WA
grechkin@cs.washington.edu

Vu Le
UC Davis
Davis, CA

vmle@ucdavis.edu

Mark Marron
Microsoft Research

Redmond, WA
marron@microsoft.com

Oleksandr Polozov
University of Washington

Seattle, WA
polozov@cs.washington.edu

Rishabh Singh
Microsoft Research

Redmond, WA
risin@microsoft.com

Benjamin Zorn
Microsoft Research

Redmond, WA
zorn@microsoft.com

Sumit Gulwani
Microsoft Research

Redmond, WA
sumitg@microsoft.com

ABSTRACT
Programming by Examples (PBE) has the potential to revo-
lutionize end-user programming by enabling end users, most
of whom are non-programmers, to create small scripts for au-
tomating repetitive tasks. However, examples, though often
easy to provide, are an ambiguous specification of the user’s
intent. Because of that, a key impedance in adoption of PBE
systems is the lack of user confidence in the correctness of
the program that was synthesized by the system. We present
two novel user interaction models that communicate action-
able information to the user to help resolve ambiguity in the
examples. One of these models allows the user to effectively
navigate between the huge set of programs that are consis-
tent with the examples provided by the user. The other model
uses active learning to ask directed example-based questions
to the user on the test input data over which the user intends to
run the synthesized program. Our user studies show that each
of these models significantly reduces the number of errors
in the performed task without any difference in completion
time. Moreover, both models are perceived as useful, and the
proactive active-learning based model has a slightly higher
preference regarding the users’ confidence in the result.

ACM Classification Keywords
D.1.7. Programming Techniques: Visual Programming; I.7.2.
Document Preparation: Scripting languages; I.2.6. Learning:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST ’15, November 08-11, 2015, Charlotte, NC, USA
© 2015 ACM. ISBN 978-1-4503-3779-3/15/11ÂĚ$15.00
DOI: http://dx.doi.org/10.1145/2807442.2807459

Induction; D.1.2. Programming Techniques: Automatic Pro-
gramming

Author Keywords
Programming by Example; Disambiguation; Program
Navigation; Data Manipulation

INTRODUCTION
Today, billions of users have access to computational devices.
However, 99% of these end users do not have programming
expertise and they often struggle with repetitive tasks in var-
ious domains that could otherwise be automated using small
scripts. Programming-by-examples (PBE) [21, 6] has the po-
tential to revolutionize this landscape since users can often
specify their intent using examples as has been observed on
various help forums [10]. PBE involves techniques that gen-
eralize example behaviors on concrete inputs provided by the
user into programs that can operate on new unseen inputs.
PBE has traditionally been applied to synthesizing small pro-
grams in various domain-specific languages (DSLs) such as
string and table transformations [10] and data extraction [19].

PBE has recently been pursued in various communities in-
cluding programming languages [20, 7, 4], inductive pro-
gramming [11], machine learning [23], artificial intelli-
gence [32], and databases [34]. The work in these communi-
ties has mostly focused on addressing one of the key technical
challenges of PBE, that of efficiently searching the underly-
ing huge state space (potentially infinite) of programs defined
by the underlying DSL for a program that is consistent with
the examples provided by the user.

However, not much attention has been given to dealing with
another key technical challenge in PBE, that of dealing with
ambiguities. Examples are an ambiguous form of specifica-
tion in the sense that there can be different programs that are

consistent with the provided examples, but these programs
differ in their behavior on some other inputs. The underlying
PBE system might end up synthesizing an unintended pro-
gram that is consistent with the examples provided by the user
but does not generate the intended results on some other in-
puts that the user cares about. In 2009 Tessa Lau presented
a critical discussion of PBE systems noting that adoption of
PBE systems is not yet widespread, and proposing that this
is mainly due to lack of usability and confidence in such sys-
tems [16]. In this paper, we present and evaluate two comple-
mentary user interaction models for PBE that help increase
user confidence in the underlying system.

Motivational Real-world PBE Case Studies
Recently, a first mass-market PBE product was released in
the form of the FlashFill feature in Microsoft Excel 2013.
It allows end users to automate sophisticated string transfor-
mations in real time from one or more user-provided exam-
ples [9]. While the PBE engine behind FlashFill received
many positive reviews from popular media,1 the user inter-
face for FlashFill leaves a lot to be desired. John Walkenbach,
an author renowned for his Excel textbooks, labeled FlashFill
as a “controversial” feature. He wrote “It’s a great concept,
but it can also lead to lots of bad data. (...) Be very care-
ful. (...) [M]ost of the extracted data will be fine. But there
might be exceptions that you don’t notice unless you ex-
amine the results very carefully.”2

Another mass-market PBE product, recently released as part
of the Windows 10 preview, is the ConvertFrom-String fea-
ture in PowerShell3. It allows end users to extract struc-
tured data out of semi-structured text/log files from one or
more user-provided examples. It is based on the FlashExtract
PBE engine that can synthesize sophisticated data extraction
scripts in real time [19]. It was well-received by various Mi-
crosoft MVPs (Most Valued Professionals), who described it
as “New kid on the block”, “This is super cool !!”, “must
admit that this cmdlet is to me one of the best improve-
ment that came with WMF5.0 and PowerShell v5”.4 How-
ever, the MVPs also complained that they had no visibility
into the process for debugging purposes. This prompted Mi-
crosoft to release an improved version of FlashExtract that
provided a flag to display the top-ranked program synthesized
by FlashExtract. An MVP still complained: “If you can un-
derstand this, you’re a better person than I am.”

User Interaction Models
We propose two novel user interaction models that aim to al-
leviate above-mentioned transparency concerns by exposing
more information to the user in a form that can be easily un-
derstood and acted upon. These models help resolve ambi-

1http://research.microsoft.com/en-us/um/people/
sumitg/flashfill.html
2http://spreadsheetpage.com/index.php/blog/C10/
3http://bit.ly/convertfrom-string
4http://research.microsoft.com/en-us/um/people/
sumitg/flashextract.html

guity in the example-based specification, thereby increasing
user’s trust in the results produced by the PBE engine.

Program Navigation: A typical PBE engine operates by syn-
thesizing multiple programs that are consistent with the ex-
amples provided by the user, and then ranking the programs in
order of their likelihood of being the intended program [10].
A typical PBE interface would pick the top-ranked program
and use it to automate the user’s task; possibly this top-ranked
program can even be shown to the user. We propose a novel
user interaction model, called Program Navigation, that al-
lows the user to navigate between all programs synthesized
by the underlying PBE engine (as opposed to displaying only
the top-ranked program) and to pick one that is intended. The
number of such programs can usually be huge (several pow-
ers of 10 such as 1030 [10]). However, these programs usually
share common sub-expressions and are described succinctly
using version space algebra based data structures [31]. We
leverage this sharing to create a navigational interface that
allows the user to select from different ranked choices for
various parts of the top-ranked program. Furthermore, these
programs are paraphrased in English for easy readability.

Conversational Clarification: We propose a complementary
novel user interaction model based on active learning, called
Conversational Clarification, wherein the system asks ques-
tions to the user to resolve ambiguities in the user’s specifi-
cation with respect to the available test data. These questions
are generated after the PBE engine has synthesized multiple
programs that are consistent with the user-provided examples.
The system executes these multiple programs on the test data
to identify any discrepancies in the execution and uses that as
the basis for asking questions to the user. The user responses
are used to refine the initial example-based specification and
the process of program synthesis is repeated.

FlashProg Framework for Data Manipulation
We have implemented the above two user interaction mod-
els in a generic manner in a UI framework called Flash-
Prog. The FlashProg framework provides UI support for sev-
eral PBE engines related to data manipulation, namely Flash-
Fill [9], FlashRelate [4], FlashExtract [19], and FlashWeb.
Even though PBE has been applied to various application do-
mains, we focus our attention in this paper on data manipula-
tion, which we believe is one of the most impactful applica-
tions for PBE. Data is locked up in semi-structured formats
(such as spreadsheets, text/log files, webpages, and PDF doc-
uments), which offer great flexibility in storing hierarchical
data by combining presentation/formatting with the underly-
ing data model, but make it extremely hard to manipulate that
data. PBE holds the promise of enabling a delightful data
wrangling experience because many tedious data manipula-
tion tasks such as extraction, transformation, and formatting
can be easily described using examples.

The FlashProg UI builds over the STEPS approach to PBE
that was advocated by Yessenov et al. [36], wherein the user
breaks down a sophisticated task into a sequence of simpler
steps, and each step is automated using PBE. We conducted a
user study, where we asked participants to extract structured

http://research.microsoft.com/en-us/um/people/sumitg/flashfill.html
http://research.microsoft.com/en-us/um/people/sumitg/flashfill.html
http://spreadsheetpage.com/index.php/blog/C10/
http://bit.ly/convertfrom-string
http://research.microsoft.com/en-us/um/people/sumitg/flashextract.html
http://research.microsoft.com/en-us/um/people/sumitg/flashextract.html

data from semi-structured text files using FlashProg. We ob-
serve that participants perform more correct extraction when
they make use of the new interaction models. To our surprise,
participants preferred Conversational Clarification over Pro-
gram Navigation slightly more even though past case studies
suggested that users wanted to look at the synthesized pro-
grams. We believe this is explained by the fact that Conversa-
tional Clarification is a proactive interface that asks clarifying
questions, whereas Program Navigation is a reactive interface
that expects an explicit correction of a mistake.

This paper makes the following contributions:

• We propose a user interaction model for PBE called Pro-
gram Navigation. It lets the users browse the large space
of programs that satisfy the user specification by selecting
ranked alternatives for different program subexpressions.
• We propose another complementary user interaction model

for PBE called Conversational Clarification. It involves
asking directed example-based questions to the user,
whose responses are then automatically fed back into the
example-based specification model.
• We present a generic framework called FlashProg that im-

plements Program Navigation and Conversational Clarifi-
cation on top of any PBE engine. We have used FlashProg
to develop user interfaces for four different PBE engines.
• We present results of a user study that evaluated our two

user interaction models (over the baseline and against each
other w.r.t. various metrics such as correctness, efficiency,
and confidence) for the FlashExtract PBE engine, which
enables data extraction from semi-structured text files. In
it, we discover that both models significantly reduce the
number of errors without any difference in completion
time. Moreover, both models are perceived as useful, but
Conversational Clarification has a slightly higher prefer-
ence w.r.t. the users’ confidence in the result.

RELATED WORK
The design of the FlashProg user interface is inspired by the
user interface of the STEPS programming system [36] that
uses hierarchical structure coloring for text extraction and
manipulation. STEPS showed the usefulness of PBE sys-
tems for text processing using a user study, where the STEPS
users completed more tasks and were faster than the con-
ventional programmers. For disambiguation and converging
to the desired task, STEPS supports two interaction mech-
anisms: (i) provide additional mock input-output examples
that capture specific intents and corner cases, and (ii) navi-
gate through a flattened list of a small set of programs (para-
phrased in English). Since the domain-specific languages
supported by FlashProg are richer and more complex, there
are often a huge number of programs that are consistent with
few examples, which makes the interaction model of nav-
igating the flattened list of programs unusable. Providing
mock input-output examples puts additional burden on users
to first identify why the system is learning an incorrect pro-
gram and then construct specific examples to avoid learning
them. FlashProg adds two new interaction models on top of
STEPS to alleviate this problem: 1) Program Navigation to
browse through the set of learned programs (paraphrased in

English) in a hierarchical manner, and 2) Conversational Clar-
ification to ask users to select the desired output on inputs for
which the system has learned multiple interpretations.

Wrangler [14] is an interactive system for creating sophis-
ticated data transformations on tabular data. The underly-
ing data transformation language of Wrangler includes trans-
forms (such as map, lookups, joins, and reshape) and func-
tions (such as sorting, aggregation, and key generation).
Wrangler automatically suggests a ranked list of paraphrased
transformations based on the context of user interactions. A
user can then navigate the space of suggested transformations
in three ways: (i) by providing additional examples, (ii) by se-
lecting an operator from the transform menu, and (iii) by edit-
ing the parameters of the suggested transforms. Since Wran-
gler’s language is aimed more at data cleaning and transfor-
mation, it is not well suited to manipulate hierarchical struc-
ture that is required for extracting data from semi-structured
sources. Moreover, the new interaction models of Program
Navigation and Conversational Clarification can augment and
complement Wrangler’s interaction model.

LAPIS [25] is a text-editor that incorporates the concept of
lightweight structure to recognize the text structure using an
extensible library of patterns and parsers. Given a set of
positive and negative examples, LAPIS learns a pattern in
a language called text constraints (TC), and highlights other
matches in the file. This enables users to perform multiple se-
lections and simultaneous editing to apply the same set of ed-
its to a group of elements. LAPIS unfortunately does not have
good support for nested and overlapping regions, which are
essential for data extraction tasks. LAPIS also introduced the
idea of outlier detection for finding atypical pattern matches
to focus user’s attention for potential incorrect generaliza-
tions [24], which is related to the Conversational Clarification
interaction model. The main difference between the two is the
way in which the match discrepancies are computed. LAPIS
models pattern matches as a list of binary-valued features and
computes outlier matches based on their weighted Euclidean
distance from the feature vector of the median match. On the
other hand, FlashProg uses program semantics to identify am-
biguous examples, where the highly ranked learnt programs
generate different outputs on the examples.

Amershi et al. [2, 3] have explored two strategies for so-
liciting effective training examples of high-value in interac-
tive machine learning systems. The first strategy of global
overview selects a subset of training examples that maxi-
mizes the mutual information with the high-dimensional vec-
tor space of the examples, and is most representative of
the training set. The second strategy of projected overview
first projects examples onto a set of principal dimensions
and then selects examples that illustrate variation amongst
those dimensions. Our Conversational Clarification interac-
tion model, on the other hand, presents a complimentary tech-
nique for selecting training examples to learn a richer class of
programs (as opposed to classifiers) based on the semantics
of the learnt programs.

There have been many other PBE-based text manipulation
systems developed in the past. FlashFill [9] learns syntac-

tic string transformations (involving concatenation of regex-
based substrings) from few examples over spreadsheet data.
SmartEdit [18] allows users to automate text processing tasks
from demonstrations by interactively navigating the space of
learned programs (represented using a version-space algebra)
using a mixed-initiative interface. Visual AWK [15] provides
a graphical environment for users to drag and drop relevant
text selections to learn patterns based on the concept of trial
and error demonstrations. It allows users to separately learn
conditionals and edit the learned programs graphically. Peri-
dot [28] allows user interface designers to easily create inter-
active and graphical user interfaces by demonstrations of the
interface and end-user interactions with it. The TELS [35]
system first records a trace, then generalizes it, and finally ex-
ecutes and extends the generated program based on user feed-
back. Some other such systems include Eager [5], DEED [8],
Tourmaline [27], and Nix’s editing by example [30]. Mar-
quise [29] lets designers provide example actions to create
user interfaces and uses a feedback window to show the in-
ferred operation using english sentences with buttons that can
be pressed to pop up the list of alternative options. Many of
these systems do not expose the learned programs back to the
user and depend on manual inspection of generated outputs
for validation. However, some systems such as SmartEdit,
Peridot, Marquise, and Visual AWK do expose the learned
programs, but the class of transformations supported by them
are limited and are not expressive enough for learning hierar-
chical extraction of nested records.

The underlying learning technology in FlashProg is based on
automated program synthesis. The key idea behind this ap-
proach is to design domain-specific languages that are expres-
sive enough to encode most common tasks that users want to
perform, but at the same time concise enough for efficient
learning. The synthesis algorithm uses a divide-and-conquer
based strategy to decompose the original learning task to
smaller sub-tasks. This approach has been used to develop
several PBE systems in the domains of syntactic string trans-
formations [9], semantic string transformations [10], data ex-
traction from semi-structured sources [19], and transforma-
tion of semi-structured tables [4]. The FlashProg framework
provides a general user interface for all these PBE systems,
where users can use Program Navigation to easily navigate
the space of learned programs in a hierarchical manner, and
use Conversational Clarification to provide additional input-
output examples.

The idea of using distinguishing inputs for disambiguation in
program synthesis was recently proposed by Jha et al. [12].
Their synthesis system generates two consistent programs P1

and P2 (instead of one), and a distinguishing input such that
programs P1 and P2 yield different results on the input. The
Conversational Clarification interaction model uses a similar
idea to ask questions but it differs in the following key ways:
(i) it selects distinguishing inputs from the user data itself
instead of generating random inputs, (ii) it converges faster
since it can execute all learned programs (instead of two)
to ask for more important clarifications, and (iii) it works in
real-time and is interactive as opposed to the constraint-solver
based technique presented in Jha et al. [12].

The Topes [33] system allows developers to implement ab-
stractions (called topes) for interactively validating and trans-
forming data in many different formats. A tope can robustly
recognize valid inputs in multiple different formats on a non-
binary scale as opposed to regular expressions that can only
provide binary outputs for definitely valid and definitely in-
valid inputs. It also provides transformation functions to
convert inputs in different formats to a consistent format.
While the goal of the Topes system is to interactively vali-
date and transform data, the goal of FlashProg is to extract
relational data from semi-structured text files and webpages.
The domain-specific languages for FlashProg build on top of
regular expressions and are quite different from the valida-
tion and transformation functions supported by Topes. Mor-
ever, the Conversational Clarification interaction model uses
the set of learnt programs to find ambiguous inputs as com-
pared to the technique used by Topes for finding questionable
inputs based on non-binary value of the tope match.

Gamut [22] is a PBD system for helping nonprogram-
mers easily create interactive games and educational soft-
ware using examples and demonstrations. Gamut’s interac-
tion techniques allows users to specify relationships between
developer-generated objects such as guide objects, cards, and
decks of cards, and then use nudges and hints to modify
or provide new behaviors. The "Do Something" interaction
model lets users specify new behaviors on an object, whereas
the "Stop That" interaction model lets users specify unde-
sired behaviors. Similar to the "Stop That" interaction model,
FlashProg also lets users specify negative examples by either
clicking the labelled output in the input pane or marking the
entry in the output table as incorrect.

There are also some recent commercial tools such as
Import.Io and Kimono that aim at extracting data from
semi-structured sources. The goal of Import.Io is to
perform the extraction task automatically without any hu-
man intervention. Although this technique works well for
some simple semi-structured sources, but as soon as the data
sources become relatively complex, it does not work that
well. Adding support for handling newer semi-structured
sources would require one to add new complex rules and
heuristics. Kimono, on the other hand, performs data extrac-
tion by examples similar to FlashProg and provides a similar
user interface. The range of logics for extracting sub-string
data from html elements supported by Kimono, however, is
not as rich compared to FlashProg. The learned regular ex-
pressions exposed by Kimono are too low-level to be easily
understable by programmers, whereas FlashProg paraphrases
the set of learned programs in a hierarchical manner. More-
over, Kimono does not support any conversational interaction
model for disambiguating ambiguous cases.

FLASHPROG USER INTERFACE
FlashProg is a Web application for PBE-based data extrac-
tion from textual documents, spreadsheets, and Web pages.
In this overview, we focus on the text domain, but the UI be-
haves similarly for all other domains as well. Figure 1 shows
a FlashProg window after providing several examples (on the
left), and after invoking the learning process (on the right).

Figure 1: FlashProg UI with PBE Interaction View in the “Output” mode, before and after the learning process. 1 – Top Toolbar,
2 – Input Text View, 3 – PBE Interaction View.

The FlashProg window consists of 3 sections: Top Toolbar
(1), Input Text View (2), and PBE Interaction View (3).

The Top Toolbar contains: (a) an input button that allows
users to upload files for processing, (b) a reset button that
resets FlashProg to an initial state, (c) a pair of undo/redo
buttons that allows users to go back and fix a mistake in a
familiar way, and (d) a “Results” button that allows users to
download the output as a CSV file for further processing.

The Input Text View is the main area for providing examples
to the FlashProg system. Similar to the STEPS approach, it
gives users the ability to provide examples by highlighting
desired sections of the document producing a set of nested
colored blocks. Additionally, FlashProg also allows users to
omit the structure boundary and only provide examples for
the fields as shown in Figure 1. After the learning process
is invoked, the output of the highest ranked program is dis-
played in the Output pane. Each new row in the output is also
matched to the corresponding region of the original document
that is highlighted with dimmer colors. A bird’s-eye view of
highlighting is implemented on top of the scroll bars, simi-
lar to the minimap feature popular in some text editors (e.g.
Sublime Text5). We have found this view helpful for look-
ing for discrepancies in the produced highlighting. The user
can also provide negative examples by clicking on previously
marked regions to communicate to the PBE system that the
region should not be selected as part of the output.

The PBE Interaction View is a tabbed pane giving users an
opportunity to interact with the PBE system in three differ-
ent ways: (i) exploring the produced output, (ii) exploring the
learned program set paraphrased into English inside program
viewer (Program Navigation), and (iii) engaging in an active
learning session through the “Disambiguation” feature (Con-
versational Clarification).6

5http://www.sublimetext.com/
6 Note that throughout the paper, we refer to the “disambiguation” as
an overall problem of selecting the program that realizes user’s intent
in PBE. However, in our UI we use the word “Disambiguation” as a
header of a pane with one iteration of the Conversational Clarifica-
tion process. We found that it describes Conversational Clarification

The Output pane displays the current state of data extraction
result either as a relational table or as a tree. To facilitate
exploration of the data, the Input Text View is scrolled to the
source position of each cell when the user hovers over it. The
user can also mark incorrect table rows as negative examples.

The Program viewer pane (Figure 2) lets users explore the
set of learned programs. We concisely describe regexes
that are used to match strings in the input text. For
instance, “Words/dots/hyphens.WhiteSpace”
(the circle is an infix concatenation) represents
[-.\pLu\pLl]+o\pZs+ (viewable in the code mode).
To further facilitate understanding of these regexes, when the
user hovers over part of a regex, our UI highlights matches
of that part in the text. In Figure 2, Name-Struct refers to
the region between two consecutive names; City-Struct
refers to the region between City and the end of the en-
closing Name-Struct region. Learned programs reference
these regions to extract data. For instance, Phone is learnt
relatively to enclosing City-struct region: “second
line” refers to the line in the City region. Additionally,
clicking on the triangular marker opens a list of alternative
suggestions for each subexpression. We show number of
highlights that will be added (or changed/removed) by the
alternative program as a +number (or a -number). If the
current program is incorrect, the user can replace some
subexpressions with alternatives from the suggested list
(Figure 6).

The Disambiguation pane (Figure 7) presents the Conversa-
tional Clarification interaction model. The PBE engine often
learns multiple programs that are consistent with the exam-
ples but produce different outputs on the rest of the document.
In such cases, this difference is highlighted and user is pre-
sented with an option to choose between the two behaviors.
Choosing one of the options is always equivalent to provid-
ing one more example (either positive or negative), thereby
invoking the learning again on the extended specification.

most lucidly to the users. Hereinafter in the paper, we refer to the
“Disambiguation pane” in our UI if the context does not facilitate
any confusion with the “disambiguation problem”.

http://www.sublimetext.com/

Figure 2: Program Viewer tab of FlashProg. It shows the ex-
traction programs that were learned in the session in Figure 1.
The programs are paraphrased in English and indented.

Figure 3: Initial input to FlashProg in our illustrative sce-
nario: extraction of the author list from the PDF bibliography
of “A Formally-Verified C Static Analyzer” [13].

Illustrative Scenario
To illustrate the different interaction models and features of
FlashProg, we consider the task of extracting the set of indi-
vidual authors from the Bibliography section of a paper “A
Formally-Verified C Static Analyzer” [13] (Figure 3). Our
model user Alice wants to extract this data to figure out who
is the most cited author in papers presented at POPL 2015.

First, Alice provides an example of an outer region contain-
ing each publication record. After providing two examples, a
program is learned and other publications are highlighted, but
the user notices that there is an unexpected gap between two
extracted regions using the bird’s-eye view (Figure 4). Giv-
ing another example to also include the text “Springer,
2014.” fixes the problem and a correct program is learned
for the publication record regions.

Next, Alice wants to extract the list of authors and provides
an example inside the first record. After learning, she
observes that the program learned is behaving incorrectly
(Figure 5). At this point, Alice can provide more examples
as before to fix the problem, but it is easier to switch to the
Program Viewer tab, and select a correct alternative for the
wrong subexpression (Figure 6). The top-ranked program for
extracting the Author list from a Record is “extract the
substring starting at first occurrence
of end of whitespace and ending at the
first occurrence of end of Camel Case in

Figure 4: Bird’s eye view showing discrepancy in extraction.

Figure 5: An error during the author list extraction.

the second line”. The sub-program for the starting
position seems correct but the sub-program for the ending po-
sition seems too specific for the given example, and Alice can
ask for other alternative programs that the system has learned
for the end position. Hovering over each alternative previews
the extraction results in the input pane. In this case, Alice
hovers over the first alternative, which generates the correct
result. The final learned program turns out to be “extract
everything between first whitespace and
first occurrence of Dot after CamelCase”
that is correct ("Wang" is considered to be in CamelCase by
FlashProg, even though it is just one word), but the logic is
quite non-obvious even for a programmer to come up with.

Now Alice wants to extract each author individually, and pro-
vides two examples within the first publication record. Flash-
Prog again does not identify all authors correctly. Alice can
provide additional examples or look at the extraction pro-
gram, but she decides to engage the Conversational Clarifi-
cation mode, and help FlashProg disambiguate between pro-
grams by answering clarifying questions (such as should the
output include “D. Richards” or “C. D. Richards”
and if “and” should be included, as shown in Figure 7). At
each iteration, FlashProg asks her to choose between several
possible highlightings in the unmarked portion of the docu-
ment. Each choice is then communicated to the PBE system
and the set of programs is re-learned. After two iterations of
Conversational Clarification, FlashProg converges on a cor-
rect program, and Alice is confident in it (Figure 8).

IMPLEMENTATION
Our underlying program learning engine is a rich toolkit of
generic algorithms for PBE. It allows a domain expert to eas-
ily define a domain-specific language (DSL) of programs that
perform data manipulation tasks in a given domain [31]. The
expert (DSL designer) only defines the semantics of DSL op-
erators, from which our engine automatically generates a syn-
thesizer. A synthesizer is an algorithm that, at run time, ac-
cepts a specification from a user, and returns a set of DSL pro-
grams that satisfy this specification. For instance, a specifica-
tion in FlashExtract, the text processing DSL of FlashProg,
is given by a sequence of positive and negative highlightings.

Figure 6: Program Viewer tab & alternative subexpressions.

Figure 7: Conversational Clarification being used to disam-
biguate different programs that extract individual authors.

The efficiency of our learning engine is based on two ideas
from our prior work in PBE: our synthesis algorithm and our
program set representation.

Synthesis algorithm Most prior work in PBE implement
their synthesis algorithms by exhaustive search over the DSL,
or delegate the task to constraint solvers [1]. In contrast,
our engine employs an intelligent “top-down” search over the
DSL structure, in which it iteratively transforms the examples
given by an end user for the entire DSL program into the ex-
amples that should be satisfied by individual subexpressions
in the program [31]. Such an approach allows FlashProg to
be responsive within 1-3 seconds for each learning round,
whereas state-of-the-art PBE techniques can take minutes or
even hours on similar tasks. Moreover, it also allows us to
generate a set of programs satisfying a specification, instead
of a single candidate. We then use a domain-specific ranking
scheme to select a program that will be presented to the user.

Program set representation A typical learning session can
return up to 1030 ambiguous programs, all consistent with the
current specification [10]. Our engine makes use of a poly-
nomial-space representation of such a program set, known
as version space algebra (VSA). It has been introduced by
Mitchell [26] in the context of machine learning, and later
used by Lau et al. [17], Polozov and Gulwani [9, 31].

The key idea of VSAs is sharing of subspaces. Consider an
operator SubStr(s, p1, p2), which extracts a substring of s
that starts at the position p1 and ends at the position p2. Here
p1 and p2 can expand to various position logics, e.g. absolute
(“5th character from the right”) or based on regular expres-
sions (“after the second number”). On a given example, p1
and p2 are known to evaluate to 1 and 4, respectively (i.e. the
result of SubStr(s, p1, p2) is the string s[1 : 4]). Importantly,

Figure 8: Final result of the bibliography extraction scenario.

both p1 and p2 may satisfy this specification in multiple possi-
ble ways. For example, p1 can expand to a program “1st char-
acter from the left”, or a program “(|s| − 1)th character from
the right”, or any consistent regex-based program (based on
the content of s in a given example). Thus, the total number of
possible consistent SubStr(s, p1, p2) programs is quadratic
in the number of possible consistent position programs (since
any consistent p1 can be combined with any consistent p2).

A VSA stores these programs concisely as a join structure
over the two program sets with learned consistent program
sets for p1 and p2 (also represented as VSAs). Such a struc-
ture consists of the two learned program sets for p1 and p2
and a “join tag”, which specifies that any combination of the
programs sampled from these two sets is a valid combination
of parameters for the SubStr operator. Therefore, the over-
all size of a VSA is typically logarithmic in the number of
programs it semantically represents.

Formally, our learning engine represents program sets as a
combination of shared program sets using two operators:
union and join. A union of two VSAs Ñ1 and Ñ2 represents
a set that is a union of two sets represented by Ñ1 and Ñ2. A
join of two VSAs Ñ1 and Ñ2 represents a set that is a Carte-
sian product of two sets represented by Ñ1 and Ñ2. Such a
representation has two major benefits: (a) it stores an expo-
nential number of candidate programs using only polynomial
space, and (b) it allows exploring the shared parts of the space
of candidates, and quickly examine the alternative candidate
subexpressions at any given program level.

The ideas explained above are the key to our novel Program
Navigation and Conversational Clarification interaction mod-
els. We present their implementation below.

Program Navigation
The two key challenges in Program Navigation are: user-
friendly paraphrasing of the DSL programs in English, and
an interactive system of alternative suggestions for program
subexpressions.

Templating language
To enable paraphrasing, we implemented a high-level tem-
plating language, which maps partial programs into partial
English phrases. Lau stated [16]:

“Users complained about arcane instructions such as
“set the CharWeight to 1” (make the text bold).
[. . .] SMARTedit users also thought a higher-level de-
scription such as “delete all hyperlinks” would be
more understandable than a series of lower level
editing commands.”

Our template-based strategy for paraphrasing avoids arcane
instructions by using "context-sensitive formatting rules", and
avoids low-level instructions by using "idiomatic rules", solv-
ing Lau’s two problems.

Paraphrasing is a conflictless bottom-up process. If possible,
we use an idiom. We then remove context formatters from the
template and apply them to their referenced child’s template.
Let us illustrate the development process with an example, a
toy program named S1:

PosPair(Pos(Line(1), 1),Pos(Line(1),−1))
which evaluates to the string between the start and end of the
second line. Line indexes start at 0, whereas char indexes
start at 1. The relevant DSL portion is defined as a CFG:

S := PosPair(p, p) p := Pos(L, n)

L := Line(n) n := int

We add three paraphrasing rules:

PosPair → “extract the string between {:0} and {:1}”
Pos → “the char number {:1} of {:0}”
Line → “line {:0}”

{:0} and {:1} refer to first and second arguments. Paraphras-
ing S1 yields (parentheses added to see the paraphrase tree):

“extract the string between (the char number (1) of
(line (1))) and (the char number (-1) of (line (1)))”

To differentiate the two 1, we rewrite the last two rules above
with a list of dot-prefixed formatters:

Pos → “the {:1.charNum} of {:0}”
Line → “{:0.lineNum}”

charNum (resp. lineNum) is a formatter mapping ints to
a char ordinal (resp. line ordinal). Formatters are lists of
〈regex, result〉 pairs modifying the template of the targeted
child. Its template is then replaced by the first matching regex
result. For example, the formatter for charNum (and another
formatter ordinal) is:

charNum : [{regex: "^1$", result: "beginning"}, . . .
{regex: "^(\\d+)$", result: "{:1.ordinal} char"}],

ordinal : [{regex: "^1$", result: "first"},
{regex: "^2$", result: "second"}. . .]

Note how we handle corner cases. Paraphrasing S1 now
yields

“extract the string between (the (beginning) of (sec-
ond line)) and (the (end) of (second line)))”

The paraphrasing can be made even more concise by adding
idiom rules, which produce more natural paraphrasing for
certain idiomatic expressions. An idiom rule applies to subex-
pressions that satisfy given equality conditions between sub-
terms or inner terms, specified by their paths. A path is a
colon-separated list of symbols, function names and child in-
dexes referring to a particular node. The rule below expresses
the idiom of extracting the entire line:

PosPair(Pos(?L, 1),Pos(?L,−1)) → “extract the {:L}”when {:0:L} = {:1:L}

S1 is finally paraphrased into “extract the (second line)”.

The limitations of this approach are mostly that all rules are
written and updated manually. When the DSL changes, this
is extra work. Furthermore, paraphrasing depends on order
of formatters and idioms, and idiom templates may also not
allow the user to explore the full program. We overcome this
by letting the user switch between the paraphrase and the code
(the latter being always complete).

Program alternatives
To enable alternatives, we record the original candidate pro-
gram set for each subexpression in the chosen program. Since
it is represented as a VSA, we can easily retrieve a subspace
of alternatives for each program subexpression, and apply the
domain-specific ranking scheme on them. The top 5 alterna-
tives are then presented to the user.

Conversational Clarification
Conversational Clarification selects examples based on differ-
ent outputs produced by generated programs. Each synthesis
step produces a VSA of ambiguous programs that are con-
sistent with the given examples. Conversational Clarification
iteratively replaces the subexpressions of the top-ranked pro-
gram with its top k alternatives from the VSA. This produces
k clarification candidates (in FlashProg, k is set to 10).

The clarifying question for the user is based on the first dis-
crepancy between the outputs of the currently selected pro-
gram P and the clarification candidateP ′. Such a discrepancy
can have three possible manifestations:

• The outputs of P and P ′ match until P selects a region r,
which does not intersect any selection of P ′. This leads to
the question “Should r be highlighted or not?”
• The outputs of P and P ′ match until P ′ selects a region r′,

which does not intersect any selection of P . This leads to
the question “Should r′ have been highlighted?”
• The outputs of P and P ′ match until P selects a region r,
P ′ selects a different region r′, and r intersects r′. This
leads to the question “Should r or r′ be highlighted?”

For better usability (and faster convergence), we merge the
three question types into one, and ask the user “What should
be highlighted: r1, r2, or nothing?” Selecting r1 or r2 would
mark the selected region as a positive example. Selecting
“nothing” would mark both r1 and r2 as negative examples.
After the user selects an option, we convert their choice into
one or more examples for the learning engine, and invoke a
new synthesis process.

Analysis
Since Conversational Clarification is an iterative refinement
of a previous synthesis process, it is guaranteed to perform
several times more efficiently compared to the last process.
Moreover, since we pick a clarifying question based on differ-
ent outputs produced by two ambiguous candidates, the new
set of candidates is guaranteed to be smaller than the previ-
ous one. Therefore, Conversational Clarification converges to
the program(s) representing user’s intent in a finite number of

rounds (if such programs exist). The number of rounds de-
pends on the space of collisions in DSL outputs and can be
exponential. In our user study and in most of our benchmarks
however, the number of Conversational Clarification rounds
never exceeded 5 for a single label.

A Conversational Clarification round is sound by construc-
tion (i.e. accepting a suggestion always yields a program that
is consistent with both the suggestion and the prior examples).
However, since our choice of clarification candidates is lim-
ited to top k alternatives at each level of the VSA, the Conver-
sational Clarification round may be incomplete (i.e. the sug-
gestions may not include the intended correct output). User
can always provide a manual example instead of using CC
suggestions in such a situation.

The performance of a single Conversational Clarification
round is linear in the VSA space (which is typically loga-
rithmic in the number of ambiguous programs), since CC is
implemented over our novel (recursively defined) ranking op-
eration over the VSA [31].

Domain-specific languages
The generic implementation of our learning engine allows
rapid development of DSLs for various data manipulation do-
mains without the accompanying burden of designing indi-
vidual synthesis algorithms or other FlashProg functionality
for them. Following this methodology, we easily incorporated
the following data manipulation DSLs in FlashProg:

1. FlashFill – a DSL for syntactic string transformations [9].
2. FlashExtract – a DSL for extracting textual information

from semi-structured documents [19].
3. FlashRelate – a DSL for extracting relational tables from

semi-structured spreadsheets [4].
4. FlashWeb – a DSL for extracting webpage content based

on CSS selectors.

We design these languages in such a way that they are
succinct enough to enable efficient learning, yet expressive
enough to support a large number real-world tasks. If a task
can be expressed in our language, our engine will learn a pro-
gram for it given sufficiently many examples. The engine
fails if the language cannot express the task. For example,
FlashExtract does not support arbitrary boolean conjunctions
and disjunctions. Hence, if the tasks require learning a com-
plex boolean expression, FlashExtract will not be able to
perform the extraction. Interested readers may refer to the
original papers for the definition of these languages and their
strengths and limitations [9, 19, 4].

Next, we present our user study on FlashExtract below, but
the functionality of FlashProg is automatically provided for
any compliant DSL. We plan to incorporate more extraction
domains, such as PDF documents, in future work.

EVALUATION
In this section, we present a user study to evaluate FlashProg.
In particular, we address three research questions for PBE:

• RQ1: Do Program Navigation and Conversational Clarifi-
cation contribute to correctness?

Figure 9: The first task of the user study (Bank listing) with
sample highlighting. Users had to extract four columns.

• RQ2: Which of Program Navigation and Conversational
Clarification is perceived more useful for data extraction?
• RQ3: Do our novel interaction models in FlashProg help

alleviate the users’ typical distrust in PBE systems?

User study design
Because our tasks can be solved without any programming
skills, we performed a within-subject study over an hetero-
geneous population of 29 people: 4 women aged between 19
and 24 and 25 men aged between 19 and 34. Their program-
ming experience ranged from none (a 32-year man doing ex-
traction tasks several times a month), less than 5 years (8 peo-
ple), less than 10 (9), less than 15 (8) to less than 20 (3). They
reported performing data extraction tasks never (4 people),
several times a year (7), several times a month (11), several
times a week (3) up to every day (2).

We selected 3 files containing several ambiguities these users
have to find out and to resolve. We chose these files among
anonymized files provided by our customers. Our choice was
also motivated by repetitive tasks, where extraction programs
are meant to be reused on other similar files. The three files
are the following:

1. Bank listing. This file contains a list of bank information
separated by state. Figure 9 shows a part of this file high-
lighted with the information we asked users to extract. An
example of a pitfall is that the system might highlight the
postal code instead of the dollar amount for some records.

2. Amazon research. As input, we present a content of the
Amazon webpage with the search results for the query
“chair”, which was manually copied and pasted into a text
editor. The data is visually structured as a list of records.
However, spacing and noise make the extraction process
mostly not straightforward.

3. Bioinformatic log. This task presents a file used in bioin-
formatics research (Figure 11). We ask to extract numerical
values. Although this file contains doubly nested records
(as in the first task), the main regions are placed far apart,
and are much larger than the regions in the other tasks.

We first provided users a brief video tutorial using the ad-
dress file as example (Figure 1).7 The video shows how to
7https://www.youtube.com/watch?v=JFRI4wIR0LE

https://www.youtube.com/watch?v=JFRI4wIR0LE

Figure 10: Bioinformatic log: Result sample.

perform two sample extractions, and use common features
such as undo/redo. It partially covers the Program Viewer tab
and the Disambiguation tab. It explains that these features
will or will not be available, depending on the tasks. When
users start FlashProg, they are given the same file as in the
video. A pop-up encourages them to play with it, and to con-
tinue when they feel ready. The Program Viewer tab and the
Disambiguation tab are both available at this point.

We then ask users to perform extraction on the three files. For
each extraction task, we provide a result sample (Figure 10).
Users then manipulate FlashProg to generate the entire output
table corresponding to that task. We further instruct them that
the order of labels do not matter, but they have to rename
them to match our result sample.

To answer RQ1, we select a number of representative values
across all fields for each task, and we automatically measure
how many of them were incorrectly highlighted. These val-
ues were selected by running FlashProg sessions in advance
ourselves and observing insightful checkpoints that require
attention. In total, we selected 6 values for task #1, 13 for
task #2 and 12 for task #3. We do not notify users about
their errors. Although this metric is not perfect, this metric
has more meaning than if we recorded all errors. As an illus-
tration, a raw error measurement in the third task for a user
forgetting about the third main record would yield more than
140 errors. Our approach returns 2 errors, one for the miss-
ing record, and one for another ambiguity that needed to be
checked but could not. This makes error measurement com-
parable across tasks.

Environments To measure the impact of Program Navigation
and Conversational Clarification interaction models indepen-
dently, we set up three interface environments.

Basic Interface (BI). The first environment enables only the
Colored Data Highlighting interaction model. It includes
the following UI features: the labeling interface for mouse-
triggered highlighting, the label menu to rename labels, to
switch between them and the Output tab.

BI + Program Navigation (BI + PN). The second envi-
ronment enables both the Colored Data Highlighting and
the Program Navigation interaction models. In addition to
the UI features described above, it also includes the Pro-
gram Viewer tab and its features (e.g. Regular expression

Figure 11: Highlighting for obtaining Figure 10.

highlighting, Alternative subexpression viewer). To em-
phasize it, the tab is automatically activated when Flash-
Prog finds a program matching the provided examples.

BI + Conversational Clarification (BI + CC). The third
environment enables both the Colored Data Highlighting
and the Conversational Clarification interaction models.
In addition to the UI features presented in the BI en-
vironment, it also includes the Disambiguation tab. To
emphasize it, the Disambiguation tab is automatically
activated after each learning process, if the learned set of
candidate programs is ambiguous.

Configurations To compensate the learning curve effects
when comparing the usefulness of Colored Data Highlight-
ing, Program Navigation, and Conversational Clarification in-
teraction models, we set up the environments in three config-
urations A, B, and C. Each configuration has the same order
of files/tasks, but we choose three environment permutations.
As we could not force people to finish the study, the number
of users per environment is not perfectly balanced.

Tasks

Config. 1. Bank 2. Amazon 3. Bio log # of users

A BI + PN BI + CC BI 8
B BI BI + PN BI + CC 12
C BI + CC BI BI + PN 9

Survey To answer RQ2 and RQ3, we asked the participants
about the perceived usefulness of our novel interaction mod-
els, and the confidence about the extraction of each file, using
a Likert scale from 1 to 7, 1 being the least useful/confident.

Results
We analyzed the data both from the logs collected by the
UI instrumentation while the users performed the study, and
from the initial and final surveys. Even if some users reported
not using a feature, we counted them in the statistics of this
feature if it was activated.

RQ1: Do Program Navigation and Conversational Clarifica-
tion contribute to correctness?

Yes. We have found significant reduction of number of
errors with each of these new interaction models (See Fig-
ure 12). Our new interaction models reduce the error rate in
data extraction without any negative effect on the users’ ex-
traction speed. To obtain this result, we applied the Wilcoxon
rank-sum test on the instrumentation data. More precisely,
users in BI + CC (W = 78.5, p = 0.01) and BI + PN

Figure 12: Distribution of error count across environments.
Both Conversational Clarification (CC) and Program Naviga-
tion (PN) significantly decrease the number of errors.

0 5 10 users

Extremely useful 7
6
5
4
3
2

Not useful at all 1

Bank
Amazon
Bio log(a) PN

0 5 10 users

Extremely useful 7
6
5
4
3
2

Not useful at all 1

(b) CC

0 5 10 users

Always
Almost always

Often
Sometimes

Never

(c)

Figure 13: User-reported: (a) usefulness of Program Naviga-
tion, (b) usefulness of Conversational Clarification, (c) cor-
rectness of one of the choices proposed by the Conversational
Clarification.

(W = 99.5, p = 0.06) performed better than BI, with no sig-
nificant difference between the two of them (W = 94, n.s.).
There was also no statistically significant difference between
the completion time in BI and completion time in BI + CC
(W = 178.5, n.s.) or BI + PN (W = 173, n.s.).

RQ2: Which of Program Navigation and Conversational
Clarification is perceived more useful for data extraction?

Conversational Clarification is perceived more useful
than Program Navigation (see Figure 13a and Figure 13b).
Comparing the user-reported usefulness between the Conver-
sational Clarification and the Program Navigation, on a scale
from 1 (not useful at all) to 7 (extremely useful), the Con-
versational Clarification has a mean score of 5.4 (σ = 1.50)
whereas the Program Navigation has 4.2 (σ = 2.12) Only 4
users out of 29 score Program Navigation more useful than
Conversational Clarification, whereas Conversational Clarifi-
cation is scored more useful by 15 users.

RQ3: Do our novel interaction models in FlashProg help al-
leviate the users’ typical distrust in PBE systems?

Yes for Conversational Clarification. Considering the con-
fidence in the final result of each task, tasks finished with
Conversational Clarification obtained a higher confidence
score compared to those without (W = 181.5, p = 0.07).
No significant difference was found for Program Navigation
(W = 152.5, n.s.). Regarding the trust our users would have
if they had to run the learned program on other inputs, we did
not find any significant differences for Conversational Clarifi-
cation (W = 146, n.s.) and Program Navigation (W = 161,
n.s.) over only BI.

More generally, to the question “How often would you use
FlashProg, compared to other extraction tools?” on a Likert
scale from 1 (never) to 5 (always), 4 users answered 5, 17
answered 4, 3 answered 3, and the remaining 4 answered 2
or less. Furthermore, all of them would recommend Flash-
Prog to someone else. When asked how much they would be
excited to have such a tool on a scale from 1 to 5, 8 users
answered 5, and 15 users answered 4.

The users’ trust is supported by data: we observed that per-
ceived correctness is negatively correlated with number of er-
rors (Spearman ρ = −0.25, p = 0.07). However, there is
no significant correlation between the number of errors made
and the programming experience mapped between 0 and 4
(ρ = −0.09, n.s.).

Other results

We observed that only 13 (45%) of our users reported to use
the Program Viewer tab when it was available. These 13 users
having experienced Program Navigation got mixed feelings
about it. In the comments they wrote in the final survey, a
22-year woman with more than 5 years of programming ex-
perience gave a positive review: “I absolutely loved [regular
expression highlighting]. I think that perfectly helps one
understand what the computer is thinking at the moment
and to identify things that were misunderstood”. Accord-
ing to a 27-year man with more than 10 years of programming
experience, the interaction was not easy enough: “the pro-
gram [is] quite understandable but it was not clear how
to modify the program”. 9 users out of 13 did not report
using the Alternative subexpression viewer when using the
Program Navigation.

On the other hand, 27 (93%) of them reported to use the Dis-
ambiguation tab when it was available. Users appreciated it.
For example, the previous woman said: “in the last exam-
ple, in which I didn’t have [Conversational Clarification]
as an option, I felt like I miss it so much”. A 27-year man
with more than 5 years of programming experience said: “It
always helps me to find the right matching”. A 19-year
old novice programmer woman said: “The purpose of each
box wasn’t clear enough, but after the text on left be-
came highlighted (hovering the boxes), the task became
easier”. However, although there were tooltips, some users
were initially confused about the way we presented negative
choices with XXX crossing the answer.

Other remarks were conceptually more serious: our tool
would be much harder to use for color blind people, the hard
mental model of clicking on examples to mark them as nega-

tive or remove them, and prefix-based nature of the FlashEx-
tract learning algorithm blocking users providing examples
randomly.

Discussion
With so many experienced users, we did not expect that only
half of them would interact with Program Navigation, and
even less with the Alternative subexpression viewer. To en-
sure usability, we developed FlashProg and Program Naviga-
tion iteratively based on the feedback of many demo sessions
and a small 3-user pilot study before running the full user
study. We did not receive any specific complaints about the
paraphrasing itself, although it certainly required substantial
time to understand their semantics. In the tasked they solved,
users might then have thought that it would take more time
to figure out where the program failed, and to find a correct
alternative, than to add one more example. We believe that
in other more complex scenarios, such as with larger files
or multiple files, the time spent using Program Navigation
could be perceived as more valuable and measured as such.
The decrease of errors may then be explained by the fact that
when Program Navigation was turned on, users have stared at
FlashProg more and took more time to catch errors.

The negative correlation between the confidence of users in
the result and the number of errors is insightful. In other
words, although we asked them to make sure the extraction
is correct and never told them they did errors, users making
more errors (thus unseen) reported to be less sure about the
extraction. The problem is therefore not just about alleviating
the users’ typical distrust in the result, it is really about its
correctness.

We also acknowledge that several factors may be a limitation
of this study: (a) we have a limited amount of heterogeneous
users; (b) the time was uncontrolled, thus we could not pre-
vent users from getting tired or from pausing in the middle of
extraction tasks; (c) besides the 29 users having completed all
the study, more than 50 users who decided to start the study
stopped before finishing the last task (this explains the unbal-
anced number of users for each condition). Thus, they were
not part of the qualitative correlations (e.g. between confi-
dence and errors), but we did include each finished task for
the error metrics; (d) if a user extracts all regions manually,
replacing a record not covered by the checkpoints by another,
we do not measure this error (false negatives).

CONCLUSION AND FURTHER WORK
In recent years we have witnessed an explosion in innovation
in two critical areas. The availability of data and ML tools
to exploit it have led to the big data revolution. At the same
time, program synthesis techniques and programming-by-ex-
ample systems have finally reached mainstream commercial
markets, greatly enhancing the power of non-programmers to
accomplish complex repetitive tasks. Our research focuses on
the intersection of these areas, specifically on enabling non-
programmers to extract and manipulate complex semi-struc-
tured data efficiently. This confluence of research areas leads
to exciting new opportunities and challenges, such as the dif-

ficult problem of enabling non-programmers to interact with
a PBE system, guiding it with confidence and precision.

We have implemented FlashProg, a prototype PBE system for
data extraction and manipulation that supports two novel user
interaction models for disambiguation in PBE, namely Pro-
gram Navigation and Conversational Clarification. In user
studies, where users were given three data extraction tasks,
we found that a significant majority of users found the tool
effective and were confident in the results. This confidence
is supported by data: both models significantly reduced the
number of extraction errors. Further, the users found the
proactive behavior of Conversational Clarification very use-
ful, and preferred it to the Program Navigation interface.

The ability to extract and transform data quickly and correctly
is an essential stage of the Big Data pipeline. As PBE tech-
nologies such as FlashProg are made more widely available
in the marketplace, we will better understand the interplay
between the user’s task understanding and the tool’s ability
to support them. Beyond our current work, there are many
opportunities for improvements, including helping users with
greater automation, helping them deal with incomplete and
sometimes incorrect data, and identifying when the user has
made a mistake in their examples. If this approach is suc-
cessful, writing data extraction scripts in the future will be as
uncommon as individuals doing long arithmetic is today.

ACKNOWLEDGMENTS
This work was sponsored by Microsoft Research, Redmond.
Mikael, Gustavo, Vu, and Alex were each supported by a one-
year position at MSR, and Maxim was supported by a six-
month position at MSR.

REFERENCES
1. Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M K

Martin, Mukund Raghothaman, Sanjit A Seshia,
Rishabh Singh, Armando Solar-Lezama, Emina Torlak,
and Abhishek Udupa. 2013. Syntax-guided synthesis. In
FMCAD. IEEE, 1–17.

2. Saleema Amershi, James Fogarty, Ashish Kapoor, and
Desney S. Tan. 2009. Overview based example selection
in end user interactive concept learning. In Proceedings
of the 22nd Annual ACM UIST Symposium, Victoria,
BC, Canada, October 4-7, 2009. 247–256.

3. Saleema Amershi, James Fogarty, Ashish Kapoor, and
Desney S. Tan. 2011. Effective End-User Interaction
with Machine Learning. In Proceedings of the 25th
AAAI Conference on AI, AAAI 2011, San Francisco,
California, USA, August 7-11, 2011.

4. Dan Barowy, Sumit Gulwani, Ted Hart, and Ben Zorn.
2015. FlashRelate: Extracting Relational Data from
Semi-Structured Spreadsheets Using Examples. In
PLDI.

5. Allen Cypher. 1991. EAGER: Programming Repetitive
Tasks by Example. In CHI. 33–39.

6. Allen Cypher (Ed.). 1993. Watch What I Do:
Programming by Demonstration. MIT Press.

7. John Feser, Swarat Chaudhuri, and Isil Dillig. 2015.
Synthesizing Data Structure Transformations from
Input-Output Examples. In PLDI.

8. Yuzo Fujishima. 1998. Demonstrational Automation of
Text Editing Tasks Involving Multiple Focus Points and
Conversions. In IUI. 101–108.

9. Sumit Gulwani. 2011. Automating string processing in
spreadsheets using input-output examples. In POPL.
317–330.

10. Sumit Gulwani, William R. Harris, and Rishabh Singh.
2012. Spreadsheet data manipulation using examples.
Commun. ACM 55, 8 (2012), 97–105.

11. Sumit Gulwani, Jose Hernandez-Orallo, Emanuel
Kitzelmann, Stephen Muggleton, Ute Schmid, and Ben
Zorn. 2015. Inductive Programming Meets the Real
World. To appear in Commun. ACM (2015).

12. Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and
Ashish Tiwari. 2010. Oracle-guided component-based
program synthesis. In ICSE. 215–224.

13. Jacques-Henri Jourdan, Vincent Laporte, Sandrine
Blazy, Xavier Leroy, and David Pichardie. 2015. A
Formally-Verified C Static Analyzer. In POPL. 247–259.

14. Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and
Jeffrey Heer. 2011. Wrangler: Interactive visual
specification of data transformation scripts. In SIGCHI.
ACM, 3363–3372.

15. Jürgen Landauer and Masahito Hirakawa. 1995. Visual
AWK: a model for text processing by demonstration. In
IEEE Symposium on Visual Languages. 267–267.

16. Tessa Lau. 2009. Why Programming-By-Demonstration
Systems Fail: Lessons Learned for Usable AI. AI
Magazine 30, 4 (2009), 65–67.

17. Tessa Lau, Pedro Domingos, and Daniel S Weld. 2000.
Version Space Algebra and its Application to
Programming by Demonstration. In ICML. 527–534.

18. Tessa Lau, Steven A. Wolfman, Pedro Domingos, and
Daniel S. Weld. 2001. Learning repetitive text-editing
procedures with SMARTedit. Your Wish Is My
Command: Giving Users the Power to Instruct Their
Software (2001), 209–226.

19. Vu Le and Sumit Gulwani. 2014. FlashExtract: a
framework for data extraction by examples. In PLDI.
542–553.

20. Alan Leung, John Sarracino, and Sorin Lerner. 2015.
Interactive Parser Synthesis by Example. In PLDI.

21. H. Lieberman. 2001. Your Wish Is My Command:
Programming by Example. Morgan Kaufmann.

22. Richard G. McDaniel and Brad A. Myers. 1999. Getting
More Out of Programming-by-Demonstration. In
Proceeding of the CHI ’99 Conference on Human
Factors in Computing Systems: The CHI is the Limit,
Pittsburgh, PA, USA, May 15-20, 1999. 442–449.

23. Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani,
Butler W. Lampson, and Adam Kalai. 2013. A Machine
Learning Framework for Programming by Example. In
ICML. 187–195.

24. Robert C. Miller and Brad A. Myers. 2001. Outlier
finding: focusing user attention on possible errors. In
UIST. 81–90.

25. Robert C. Miller and Brad A. Myers. 2002. LAPIS:
Smart editing with text structure. In CHI ’02. ACM,
496–497.

26. Tom M Mitchell. 1982. Generalization as search.
Artificial intelligence 18, 2 (1982), 203–226.

27. Brad A. Myers. 1993. Tourmaline: Text Formatting by
Demonstration. In Watch What I Do, Allen Cypher
(Ed.). MIT Press, 309–321.

28. Brad A. Myers and William Buxton. 1986. Creating
highly-interactive and graphical user interfaces by
demonstration. In Proceedings of the 13th Annual
Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 1986. 249–258.

29. Brad A. Myers, Richard G. McDaniel, and David S.
Kosbie. 1993. Marquise: creating complete user
interfaces by demonstration. In Human-Computer
Interaction, INTERACT ’93, IFIP TC13 International
Conference on Human-Computer Interaction, 24-29
April 1993, Amsterdam, The Netherlands, jointly
organised with ACM Conference on Human Aspects in
Computing Systems CHI’93. 293–300.

30. Robert P. Nix. 1985. Editing by Example. TOPLAS 7, 4
(1985), 600–621.

31. Oleksandr Polozov and Sumit Gulwani. 2015.
FlashMeta: A Framework for Inductive Program
Synthesis. Technical Report. Microsoft Research.

32. Mohammad Raza, Sumit Gulwani, and Natasa
Milic-Frayling. 2014. Programming by Example Using
Least General Generalizations. In AAAI. 283–290.

33. Christopher Scaffidi, Brad A. Myers, and Mary Shaw.
2008. Topes: reusable abstractions for validating data. In
30th International Conference on Software Engineering
(ICSE 2008), Leipzig, Germany, May 10-18, 2008. 1–10.

34. Yanyan Shen, Kaushik Chakrabarti, Surajit Chaudhuri,
Bolin Ding, and Lev Novik. 2014. Discovering queries
based on example tuples. In SIGMOD. 493–504.

35. Ian H. Witten and Dan Mo. 1993. TELS: Learning Text
Editing Tasks from Examples. In Watch What I Do,
Allen Cypher (Ed.). MIT Press, 183–203.

36. Kuat Yessenov, Shubham Tulsiani, Aditya Krishna
Menon, Robert C. Miller, Sumit Gulwani, Butler W.
Lampson, and Adam Kalai. 2013. A colorful approach
to text processing by example. In UIST. 495–504.

	Introduction
	Related work
	FlashProg User Interface
	Illustrative Scenario

	Implementation
	Program Navigation
	Templating language
	Program alternatives

	Conversational Clarification
	Domain-specific languages

	Evaluation
	User study design
	Results
	Discussion

	Conclusion and further work
	Acknowledgments
	REFERENCES

